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ABSTRACT

In this paper, we are interested in exploiting the heterogeneity of a robotic network made of ground and aerial
agents to sense multiple targets in a cluttered environment. Maintaining wireless communication on this type of
networks is fundamentally important specially for cooperative purposes. The proposed heterogeneous network
consists of ground sensors, e.g., OctoRoACHes, and aerial routers, e.g., quadrotors. Adaptive potential field
methods are used to coordinate the ground mobile sensors. Moreover, a reward function for the aerial mobile
wireless routers is formulated to guarantee communication coverage among the ground sensors and a fixed
base station. A sub-optimal controller is proposed based on an approximate control policy iteration technique.
Simulation results of a case study are presented to illustrate the proposed methodology.

Keywords: Robust Connectivity, Adaptive Potential Functions, Approximate Policy Iteration, Heterogeneous
Systems

1. INTRODUCTION

The scenario envisioned in this paper is intended for target sensing in hazardous environments like in a disaster
area with collapsed structures, see Figure 1(a). In these situations, the use of heterogeneous systems made up
of aerial and ground robotic vehicles would maximize the probability to efficiently and successfully accomplish
the mission. For instance, aerial vehicles have the capability to cover an area faster but cannot have a detailed
view of caves or buildings. On the other hand, multi-legged crawling robotic platforms can only explore a
limited area, but do so with much more accuracy. In addition, a reliable wireless connectivity is an important
factor to be considered when dealing with multi-agent systems. Due to several limitations in the communication
channel, especially when the transmission is through the air medium, complications such as shadow effects and
secondary reflections arise. These phenomena create a variety of constrains on the possible relative positions of
the heterogeneous agents. Thus, we are interested in developing strategies to enhance connectivity of the network
of robots and a fixed base station while a given number of targets are sensed. To be more specific, we describe a
target sensing algorithm for a ground mobile sensor network by relaxing the assumption of network connectivity
introducing a specialized aerial router agents which are better equipped to communicate over longer distances.
In order to solve this problem, the mobile sensors are coordinated based on an adaptive potential method; while,
Online Least-Squares Policy Iteration (online LSPI)1,2 , an Approximate Dynamic Programming (ADP) policy
iteration technique, is used to modify the position of the mobile routers in order to maintain the communication
capabilities between the sensor network and the base station.

The objective of maintaining connectivity together with additional requirements like collision avoidance or
formation control in the motion planning of a multi-robot system has been extensively studied in the literature.
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Figure 1. (a) A quadrotor as communication router for a team of crawlers that are exploring and sensing a disaster area;
and (b) the 3D simulation environment used in this work with a legend describing its components. The magenta vector
from each one of the mobile routers to the base station indicates there exists a point-to-point link between these two
elements at any time.

For instance in3 , decentralized controllers based on navigation functions for a group of robots are developed
to satisfy individual sensing goals while some neighborhood connectivity relationships are maintained. In4 ,
communication range and line-of-sight are used as motion constraints for a swarm of point robots which goes from
an initial to a final configuration in a cluttered environment. Meanwhile,5 introduces a multi-robot exploration
algorithm that uses a utility function built taking into account the constraints of wireless networking. Monitoring
the communication link quality or the construction of a signal strength map are strategies described in6 for a
good link quality maintenance in the deployment of a mobile robot network. Stochastic communication models
are used in7 to develop an algorithm to maintain end-to-end connectivity in a team of autonomous robots.

Most of the literature on multi-agent robotic systems that considers some type of communication constraint
assumes homogeneity among the members of the system. However, recent works8–11 have started exploiting
the advantage of a heterogeneous multi-robot network to enhance the communication capabilities of the whole
system. In,8 a team of Unmanned Ground Vehicles (UGVs) performs a collaborative task while a team of
Unmanned Aerial Vehicles (UAVs) is positioned in a configuration such that they optimize the communication
link quality to support the team of UGVs, but the authors assume that the UGVs are static to guarantee the
connectivity of the UAV-UGV network. By using a heterogeneous robotic system, a search/pursuit scenario is
implemented in9 where a control algorithm guarantees a certain level of Signal-to-Interference plus Noise Ratio
(SINR) among the members of the system. Even though the field-of-view of the sensor members in the network
is considered, the geometry of the agents is neglected. The authors in10 introduce a mobile communication relay
to a network of sensors and derive connectivity constraints among the network members. Afterwards, these
constraints are used to maximize the feasible motion sets of the sensing agents. In this work as assumption, the
network moves in a free-obstacle environment and its agents are considered as point robots. Communication
maintenance for a group of heterogeneous robots is enforced in11 by a passivity-based decentralized strategy.
This approach allows creation/deletion of communication links at any time as long as global connectivity is
preserved, but the strategy is not tested in the case that the network has a main goal like sensing on top of
maintaining connectivity.

Our goal is to deploy a heterogeneous system made of mobile sensors and a mobile router in an obstacle-
populated area to get measurements of a number of fixed static targets. Moreover, we consider the platform
and field-of-view geometry12 for the case of the sensors; while, we assume point robots only for the case of the
routers. In addition, we present the 3-D environment implemented in MATLAB for simulation purposes.
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2. BACKGROUND

In this section, we present a concise explanation about the concept of heterogeneity in robotic networks. Also, we
provide a brief overview about potential field methods and approximate dynamic programming that are behind
the implementation of the controller that will be discussed in Section 4.

2.1 Heterogeneous Robotic Networks

Heterogeneity is used in general to describe a network that consists of agents with variations on their hardware
structure and/or on their mission objective10 . For example, hardware heterogeneity includes different sensor
footprints,13 different communication ranges10 and of course different agent dynamics9 , among many others. On
the other hand in objective-based heterogeneity, the overall mission goal is divided into multiple sub-tasks that are
assigned to each one of the agents in the network. A clear example of heterogeneity based on the mission objective
is the dynamic sub-task coordination of an heterogeneous robotic team in the RoboCup soccer competitions14 .
The difficulty in deriving suitable controllers for heterogeneous robotic networks lies in handle the hardware
variations to combine behaviors in a way that the overall objective is achieved maintaining properties such as
convergence and stability.

The Multi-Agent Robotics Hybrid and Embedded Systems Laboratory, Marhes Lab, at the University
of New Mexico is a clear example of an heterogeneous robotic network15 . Its robotic test-bed consists of
holonomic and non-holonomic ground vehicles, rotorcraft unmaned aerial vehicles, small crawling robots and
other commercially available platforms. Figure 2(a) shows an aerial vehicle hovering over a group of legged-
crawling robots in a cluttered environment. In addition, the laboratory is equipped with a high-precision motion
capture system, an up-to-date sensor suite, high-performance embedded controllers and wireless communication
devices for networking. The block diagram in Figure 2(b) presents an example of how the test-bed is setup
from the communications perspective. The Marhes Lab falls under both hardware-based and objective-based
heterogeneity since its robotic platforms present different agent dynamics and for example the ground robots
can be considered as mobile sensors while the aerial agents can act as communication routers dividing efforts to
accomplish a common main goal.

(a) (b)

Figure 2. The Marhes Lab, an heterogeneous robotic network: (a) a quadrotor hovering over a group of small crawling
robots, and (b) a block diagram showing the communication links for experimental purposes.

2.2 Potential Field Methods

The potential field method is a robot motion planning approach that controls a robot movement based on the
gradient field of a potential function12 . Potential field was originally developed as an on-line collision avoidance
approach, applicable when a robot does not have a prior model of the obstacles, but senses them during motion
execution16 . The main idea besides most proposed potential functions12,16,17 is that a robot should be attracted
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toward its target configuration, while being repulsed by possible obstacles. Therefore, the obstacle and target
configuration are considered as sources to construct a potential function U . In general, U consists of two
components: an attractive potential Uatt generated for example by the target configuration and a repulsive
potential Urep generated for example by the obstacles. Thus, the total potential is given by

U(x) = Uatt(x) + Urep(x),

where x = [x1 x2 ... xn]T ∈ Rn is the configuration state of the robot. The force applied on the robor is
proportional to the negative gradient of U

∇U(x) =

[
∂U((x))

∂x1

∂U((x))

∂x2
...
∂U((x))

∂xn

]T
,

and it is used to design a controller for the robot movement. As in,12,16 an attractive potential can be represented
as

Uatt(x) =
1

2
ηatt%

2
t (x), (1)

where ηatt is a scaling factor and %t(x) is the Euclidean distance between the robot and the target configuration.
Meanwhile, a repulsive potential can be given by

Urep(x) =

{
1
2ηrep

(
1

%o(x)
− 1

d0

)2
if %o(x) ≤ d0,

0 if %o(x) > d0,
(2)

where ηrep is a scaling factor, %o(x) is the Euclidean distance between the robot and the nearest obstacle, and
do is the distance of influence of the obstacles. In particular, an on-line potential field method essentially acts
as a descent optimization procedure, so it may get stuck at a local minimum other than the goal configuration.
However, the combination of potential field methods with graph searching techniques has demonstrated to be a
valid approach such that a robot escapes the local minimum12,18,19 .

2.3 Approximate Dynamic Programming

In recent years, Reinforcement Learning, RL, has grown as an effective approach for control applications and
indeed many new formulations under the RL umbrella have appeared20 . RL refers to an actor, e.g., a robotic
agent, which interacts with its environment and modifies its actions, e.g., its control policy, based on stimuli
received in response to its actions, e.g., a scalar reward value. Approximate Dynamic Programming, ADP, is
a family of techniques within RL for the feedback control of human engineered systems21,22 . Indeed, ADP is
an effective framework to circumvent the curse of dimensionality in Dynamic Programming, DP, preventing the
direct adoption of DP in many real-world control problems1,22–25 . Now, consider the discrete-time nonlinear
deterministic system

xk+1 = f(xk,uk),

where k is the discrete time, x ∈ X ⊂ Rn represents the state vector of the system, u ∈ U ⊂ Rm denotes the
control action and f : X ×U → X is the system function. The control policy for this system is defined as a
function h : X → U such that

uk = h(xk),

and a reward function ρ : X ×U → R evaluates the immediate effect of the action uk. Indeed, it produces a
scalar reward signal given by

Υk = ρ(xk, h(xk)).
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f and ρ together with X and U constitute a so-called Markov Decision Process, MDP1,23 . Indeed, given f , ρ,
the current state xk and the current action uk are sufficient to find the next state xk+1 and the reward Υk. This
is the well known Markov property1,24 .

The return Q-function Q(h) : X ×U → R represents the reward obtained by the controller in the long run
and it is given by

Q(h)(xk,uk) =

∞∑
i=k

γi−kρ(xi,ui), (3)

where γ ∈ [0, 1) is a discount factor. In RL and DP the goal is to find an optimal policy that maximizes the
return. Rewriting (3) as

Q(h)(xk,uk) = ρ(xk,uk) + γ

∞∑
i=k+1

γi−(k+1)ρ(xi,ui),

then its equivalent difference equation is

Q(h)(xk,uk) = ρ(xk,uk) + γQ(h)(xk+1,uk+1), Q(x0,u0) = 0.

This is a nonlinear Lyapunov equation known as Bellman equation and its optimal value can be written as21

Q∗(xk,uk) = max
h

{
ρ(xk,uk) + γQ(h)(xk+1,uk+1)

}
.

By Bellman’s optimality principle, one gets that

Q∗(xk,uk) = max
h
{ρ(xk,uk) + γQ∗(xk+1,uk+1)} .

This is the Bellman optimality equation also known as the discrte-time Hamilton-Jacobi-Bellman (HJB) equation.
Then, the optimal control policy at time k is equal to

h∗(xk) = arg max
h

{ρ(xk, h(xk)) + γQ∗(xk+1, h(xk+1))} . (4)

Notice that the optimal policy at k + 1 must be known to determine the optimal policy at time k. Thus,
Bellman’s principle yields by nature to offline planning methods. Also, the classical DP and RL algorithms
require exact representation of the value function Q(h) and the policy h. In general, this can only be achieved
by storing distinct return estimates for every state-action pair. However, exact storage is not possible when the
state variables have a very large or infinite number of possibles values. Therefore, ADP is used to do online
reinforcement learning for solving the optimal control problem by using function approximation structures to
estimate the value function. In fact, online LSPI1,2 is an ADP algorithm that belongs to the approximate policy
iteration (PI) techniques for ADP. In PI, the current policy is evaluated by computing its approximate value
function which is then used to find a new improved policy.

3. PROBLEM FORMULATION

3.1 Assumptions

In this paper we focus on a set of robots, R , made of two types of agents: L mobile sensors that form the set of
sensors S = {s1, ..., sL} and one mobile router denoted by r. Therefore, r /∈ S and R = S ∪ {r}. We divide R
in these two groups considering that the mobile sensors can be crawling robots, i.e., OctoRoACHes26 , while the
communication relays can be unmanned aerial vehicles, i.e., quadrotors27 .

The set R operates in W ⊂ R3 which is a compact subset of a three-dimensional Euclidean space where there
is a fixed base station b . In R , there are M convex obstacles grouped in the set O = {O1, ...,OM} and there are
N static rigid targets that forms the set T = {T1, ...,TN} such that O ∩ T = ∅. We denote IO and IT as the
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index sets of O and T , respectively. For all j ∈ IT , we call oT j to the center of Tj . Meanwhile embedded in W ,
there is a fixed Cartesian frame FW with origin oW . FW allows us to describe the position and orientation of
the agents, objects and targets in W . For instance, ∀k ∈ IO , every point of Ok has a fixed position with respect
to FW because the Ok’s are considered rigid and fixed in W 16 . Figure 1(b) shows the 3D environment created
in MATLAB for simulation purposes. Also, we include in this figure a legend on the right top corner to facilitate
the reference of the different elements consider in this paper.

3.1.1 Motion Dynamics

Let IS be the index set of S , then IS = {1, ..., L}. We consider ∀i ∈ IS si has a platform geometry Ai ⊂ R3 and
a field-of-view (FOV) geometry Vi ⊂ R3 from which the robot can obtain sensor measurements12,28 , see Figure
1(b). We also assume Ai = Aj and Vi = Vj ∀i, j ∈ IS . Furthermore, Ai and Vi are both rigid and Vi has a fixed

position and orientation with respect to Ai. We say that ∀i ∈ IS and ∀j ∈ IT the sensor si gets measurements

of the target Tj when Vi ∩ Tj 6= ∅. In fact, we ensure this last condition when si ∈ B
(

oTj , dosens

)
where dosens

is the minimum distance to the target Tj for getting measurements. We use B(q, δ) to denote the open ball of
radius δ centered at q. In addition, we suppose that FA i is a Cartesian frame embedded in Ai with origin oA i.
Now let (xsi , ysi) be the position of FA i respect to FW and let θi be the orientation of FA i respect to FW . Then,
we define ∀i ∈ IS the state vector of the sensor si as qsi = [xsi ysi θi] ∈ SE(2). In other words, we consider that
every si is moving just on the xy plane with θi as its heading angle. Notice that qsi can be used to determine
the position and orientation of Ai and Vi respect to FW . The state vector of each mobile sensor, qsi , must also
satisfy the sensor dynamics that are given by the unicycle model,

ẋsi = vi cos θi,
ẏsi = vi sin θi,
v̇i = ai,

θ̇i = ωi,

(5)

where ai and ωi are the ith mobile sensor’s linear acceleration and angular velocity, respectively. Thus, the
control vector for the si sensor is usi = [ai ωi] ∈ R2.

On the other hand for the mobile router r, the range of communication coverage is denoted as δr. We also
assume that r moves at a safe fixed height over the mobile sensors and over all the obstacles in W . Furthermore,
its motion dynamics are given by

q̈r = ur, (6)

where qr = [xr yr zr] ∈ R3 is the state vector of the mobile router and specifies its 3-D position respect to FW ,
while ur ∈ R3 is its acceleration control input. We say that ur = h(qr) where h(·) is the control policy for r.

3.1.2 Communication Links

For the next definitions, q(xy) = q · vxy where vxy = [1 1 0]T . In our scenario, see Figures 3(a) and 3(b), we
assume there is a point-to-point link between the mobile router r and the base station b at any time. This link
is represented by the magenta vector in Figures 3(a) and 3(b). Also, we suppose that r can manage at any time
communication packets between any pair of sensors in S or between a sensor in S and b . Indeed, we introduce
the next two definitions.

Definition 3.1. For all i, j ∈ IS , i 6= j, si has bidirectional communication with sj if q
(xy)
si ,q

(xy)
sj ∈ B

(
q
(xy)
r , δr

)
.

Definition 3.2. For every i ∈ IS , si has bidirectional communication with b if q
(xy)
si ∈ B

(
q
(xy)
r , δr

)
.

Therefore, a mobile sensors can talk with one of its pairs just if both are within the ball of radius δr and

centered at q
(xy)
r . Similarly, a mobile sensor can receive/send information from/to the base station just if it is

within the ball of radius δr and centered at q
(xy)
r . It is clear if Definition 3.2 holds for every i ∈ IS then Definition

3.1 also holds. Consequently, we can combine both definitions as next
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Definition 3.3. If ∀i ∈ IS ,q
(xy)
si ∈ B

(
q
(xy)
r , δr

)
then si has bidirectional communication with any sj where

j ∈ IS , i 6= j, and si also has bidirectional communication with b.

Considering the explanation on Section 2.1 and from the assumptions detailed in Sections 3.1.1 and 3.1.2,
R is an heterogeneous robotic network that exhibits hardware-based and objective-based heterogeneity. In fact,
we are assuming agents with different dynamics and communication ranges, so R has hardware heterogeneity.
Also, R presents objective-based heterogeneity because we assume that the ground agents objective is purely
target sensing while the aerial agent objective is maintaining connectivity among the mobile sensors and the base
station.

(a) (b)

Figure 3. Representation of the communication constraints specified by Definitios 3.1, 3.2 and 3.3. (a) 3D-view, and (b)
2D-view (xy view).

3.2 Problem Statement

Under the assumptions described in 3.1, we are concerned with the following problem: A set of heterogeneous
robots R formed by L mobile sensors and one mobile router r must obtain measurements of M targets located
in an obstacle populated environment such that R maintains inter-agent connectivity and also connectivity with
a base station b .

Since the set R works in a cluttered scenario, we have to add inter-robot collision prevention and obstacle
avoidance to the objectives stated in the problem. Consequently, the problem considered in this paper aims to
design a controller for the agents of the heterogeneous robotic network R such that they: (i) sense M static
targets, (ii) keep inter-agent connectivity among the mobile sensors, (iii) keep mobile sensor and base station
connectivity, (iv) avoid inter-agent collisions, and (v) avoid obstacle collisions. From the assumptions given in
Section 3.1, the objectives (i) to (v) need to be considered for the design of the controller for the mobile sensors.
On the contrary, the objectives (i), (iv) and (v) are not part of the controller design for the mobile router r
because we assume that it has only communication and not sensing capabilities, and it always flies at a safe
height over the mobile sensors and obstacles. In the next section, the proposed controllers for the mobile sensors
and for the mobile router are described.
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4. METHODOLOGY

From the problem statement, Section 3.2, we need to design two local controllers: one for the mobile sensors and
one for the mobile router. Next, we present the methodologies around these controllers and then they will be
tested in simulation, see Section 5. For the next definitions, ‖ · ‖ denotes the Euclidean norm.

4.1 Mobile Sensor Controller

In this case, the objectives (i) to (v) have to be accomplished by the controller of each si ∈ S . For the
sensing objective (i), we consider that the set of mobile sensors S takes measurements of the M targets in
T = {T1, ...,TM} in sequential order. This is first take measurements of T1 then of T2 and so on until S takes
measurements of TM . For each si, we design its controller based on potential field methods, Section 2.2, and
specially taking as a based the potential functions given in equation (1), an attractive potential, and in equation
(2), a repulsive potential. Thus, we define Ui(qsi), the potential function of the ith mobile sensor with i ∈ IS as

Ui(qsi) = Ut(qsi) + Uc(qsi) + Uo(qsi), (7)

where Ut(qsi) is the attractive potential of the jth target with j ∈ IT , Uc(qsi) is a combination of an attractive
potential for keeping inter-sensor connectivity and a repulsive potential for avoiding inter-sensor collision, and
Uo(qsi) is a repulsive potential for obstacle avoidance.

The attractive potential Ut(qsi) is given by

Ut(qsi) =

{
1
2ηt%

2
t (qsi ,Tj) if %t(qsi ,Tj) ≥ dosens ,

0 if %t(qsi ,Tj) < dosens ,
(8)

where dosens is the required distance from si to Tj to get sensor measurements, see Section 3.1.1, and %t(qsi ,Tj)
is the distance between the mobile sensor si and the target Tj defined as

%t(qsi ,Tj) = max
{
‖q(xy)

si − o
(xy)
1 ‖, ‖q(xy)

si − o
(xy)
2 ‖

}
,

with o1,o2 ∈ Tj , i.e., o1 and o2 are the coordinates of two points within Tj .
The potential Uc(qsi) is defined as

Uc(qsi) =

L∑
l=1,l 6=i

U(qsi ,qsl), (9)

with

U(qsi ,qsl) =


1
2ηc%

2
s(qsi ,qsl) if %s(qsi ,qsl) >

δr
2 ,

1
2ηc

(
1

%s(qsi
,qsl

) −
1

docol

)2
if %s(qsi ,qsl) ≤ docol ,

0 otherwise,

(10)

where δr > docol , δr is the range of communication coverage, see Section 3.1.1, docol is the clearance inter-sensor

distance, and %s(qsi ,qsl) = ‖q(xy)
si − q

(xy)
sl ‖.

The repulsive potential for obstacle avoidance Uo(qsi) is given by

Uo(qsi) =

M∑
k=1

U(qsi ,Ok), (11)

with

U(qsi ,Ok) =

{
1
2ηrep

(
1

%o(qsi
,Ok)
− 1

doobj

)2
if %o(qsi) ≤ doobj ,

0 if %o(qsi) > doobj ,
(12)
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where %o(qsi ,Ok) is the distance between si and the kth obstacle, and doobj is the influence distance of the
obstacles.

Respect to the scaling factors ηt, ηc, and ηo, we assign their values according to Algorithm 1. Using this
algorithm, we adapt the relative importance of the potential functions Ut(qsi), U(qsi ,qsl), and U(qsi ,Ok)
between each other at every step time. For example, if a mobile sensor si is far from a target, but it is more
possible a inter-sensor collision than an obstacle collision, i.e., ec > eo > et, then we give more priority to the
potential function U(qsi ,qsl) with Algorithm 1 in order to avoid the inter-sensor collision.

Algorithm 1 Assignment of the scaling factors ηt, ηc and ηo
Input: : β1, β2, and β3 positive scaling factors such that β1 > β2 > β3

1: et =

{
|%t(qsi ,Tj)− dosens

| if %t(qsi ,Tj) ≥ dosens

0 if %t(qsi ,Tj) < dosens

2: ec =

 |%s(qsi ,qsl)−
δr
2 | if %s(qsi ,qsl) >

δr
2

|%s(qsi ,qsl)− docol | if %s(qsi ,qsl) ≤ docol
0 otherwise

3: eo =

{
|%o(qsi)− doobj | if %o(x) ≤ doobj
0 if %o(qsi) > doobj

4: if et ≥ ec and et ≥ eo then
5: ηt = β1
6: if ec ≥ eo then
7: ηc = β2, ηo = β3
8: else
9: ηc = β3, ηo = β2

10: end if
11: else if et < ec and et ≥ eo then
12: ηt = β2, ηc = β1, ηo = β3
13: else if et ≥ ec and et < eo then
14: ηt = β2, ηc = β3, ηo = β1
15: else
16: ηt = β3
17: if ec ≥ eo then
18: ηc = β1, ηo = β2
19: else
20: ηc = β2, ηo = β1
21: end if
22: end if

The gradient of Ui(qsi) is

∇Ui(qsi) =

[
∂Ui(qsi)

∂xsi

∂Ui(qsi)

∂ysi

∂Ui(qsi)

∂θi

]
,

and then the artificial force induced by the potential function is Fi(qsi) = −∇Ui(qsi). Now from Section 3.1.1,
the control vector for the si sensor is usi = [ai ωi], so the potential-based control law29 is given by

ai = −[cos θi sin θi 0]∇Ui(qsi)T − k0vi, (13)

ωi = k1

[
atan2

(
∂Ui(qsi)

∂xsi
,
∂Ui(qsi)

∂ysi

)
− θi

]
, (14)

where k0 and k1 are positive constants.
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4.2 Mobile Router Controller

The mobile router controller must satisfy the objectives (ii) and (iii) enumerated in Section 3.2. Indeed, these
objectives are satisfied if Definition 3.3 holds. Thus, the mobile router r needs to maintain an adequate relative
position respect to each one of the mobile sensors in S . We formulate the next reward function for r in order to
ensure its adequate position at all times,

ρc(qr) =

L∑
i=1

ζ
(
e−%r(qr,qsi

)/τ
)
, (15)

where ζ is a positive scaling parameter, 0 < τ � 1, and %r(qr,qsi) is the separation distance given by

%r(qr,qsi) = |‖q(xy)
r − q(xy)

si ‖ − δr|. (16)

In addition, a reward function ρr(ur) is associated with the control input for the relay such that

ρr(ur) = uTr Rrur, (17)

where Rr = diag[a b c] with scalar weights a, b, c > 0. Considering the rewards (15) and (17), the total term
function for the mobile router is

Υ(qr,ur) = ρc(qr)− ρr(ur), (18)

and using this function, we create the Q-function for the router as

Q(h)(qr,ur) =

∞∑
k=0

γkΥ(qr(k),ur(k)), (19)

where γ ∈ [0, 1) is the discount factor. Therefore, our goal is to select the control policies h(qr) such that
Q(qr,ur) is maximized.

Online LSPI algorithm1,2 is used to solve this optimal control problem. This algorithm is an approximate PI
technique for ADP (see Section 2.3). In general, the PI algorithm starts with an arbitrary initial policy h0. Then
at every iteration ` ≥ 0, it evaluates the current policy, i.e., compute its Q-function Qh` and finds an improved
policy using

h`+1(qr) = arg max
h
{Q(h`)(qr,ur)} (20)

The PI algorithm converges to an optimal policy h∗23 . In online LSPI, the Q function is approximated using
the linear parametrization

Q̂(qr,ur) = φT (qr,ur)θ (21)

where φ(qr,ur) = [φ1(qr ur) ... φm(qr,ur)]
T

is a vector of m basis functions, BFs, and θ ∈ Rm is a parameter
vector. In order to find the approximate Q-function of the current policy, online LSPI computes the parameter
vector from a batch of samples running least-squares temporal difference for Q-functions, LSTD-Q,24,30 that is
a policy evaluation algorithm. Considering a set of samples

{
(qrls ,urls ),Υ(qrls ,urls )|ls = 0, ..., ns

}
constructed

by state-action samples and then computing next states and rewards, LSTD-Q process the samples using

Γls+1 = Γls + φ(qrls ,urls )φT (qrls ,urls )

Λls+1 = Λls + φ(qrls ,urls )φT (qrls+1
,urls+1

) (22)

zls+1 = zls + φ(qrls ,urls )ρ(qrls ,urls )

with Γ0 = 0,Λ0 = 0, z0 = 0, and then solves the equation

1

ns
Γns

θ̂h = γ
1

ns
Λns

θ̂h +
1

ns
zns

(23)
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to find an approximate parameter vector θ̂h. The solution θ̂h found by LSTD-Q is substitute in (21) to get
an approximate Q-function which is used to perform a policy improvement with (20) obtaining in this way an
approximate PI algorithm. Indeed, online LSPI performs policy improvements once every few transitions before
an evaluation of the current policy can be completed. Thus by exploiting the data collected by interaction, the
online LSPI algorithm provides policy improvements. Furthermore, it explores other actions than those given by
the current policy. In fact, the classical ε-greedy exploration24 is used at every step k.

Algorithm 2 Online LSPI with ε-greedy exploration

Input: : discount factor γ, BFs φ1, ...,φn, a small constant βΓ > 0
policy improvement interval Kθ, exploration schedule {εk}∞k=0

1: ` = 0, initialize policy h0
2: Γ0 = βΓIn×n,Λ0 = 0, z0 = 0
3: measure initial state x0

4: for every time step k = 0, 1, 2, ... do

5: urk =

{
h`(qrk) with probability 1− εk (exploit)
a uniform random action with probability εk (explore)

6: apply urk , measure next state qrk+1
and reward Υk+1

7: Γk+1 = Γk + φ(qrk ,urk)φT (qrk ,urk)
8: Λk+1 = Λk + φ(qrk ,urk)φT (qrk+1

,urk+1
)

9: zk+1 = zk + φ(qrk ,urk)ρ(qrk ,urk)
10: if k = (`+ 1)Kθ then
11: solve 1

k+1Γk+1θ` = γ 1
k+1Λk+1θ` + 1

k+1zk+1 B finalize policy evaluation

12: h`+1(x) = arg maxh{φT (qr,ur)θ`} B policy improvement
13: ` = `+ 1
14: end if
15: end for

Algorithm 2 presents the online LSPI with ε-greedy exploration approach1,2 applied for our case. The number
Kθ ∈ N,Kθ 6= 0 is the number of transitions between consecutive policy improvements. When Kθ = 1 the policy
is updated after every sample and the online LSPI is fully optimistic23 . Meanwhile, the algorithm is partially
optimistic when Kθ > 1. In general, the number Kθ should not be chosen too large. About the exploration
schedule {εk}∞k=0, it should not approach to zero fast since a significant amount of exploration is recommended.

5. SIMULATION RESULTS

A 3-D environment is developed in MATLAB to test the methods proposed in Section 4. The sensor platform
geometry as well as its FOV geometry are shown in Figure 1(b). On the other hand, the mobile routers are
assumed as point robots, but they are represented as a thin cross with four circles at each side just for visualization
purposes, see Figure 1(b) and Figure 4. Obstacle geometries and target geometries are assumed to be known a
priori. The heterogeneous network considered for simulation is formed by 1 mobile router and 3 mobile sensors.
The network moves in an environment W of 4×4×1.5 m3 with 4 obstacles and 2 targets, see Figure 4. The base
station is located at the position (−1.75, 1.75) m closed where the network starts moving to. The communication
coverage radius for the mobile router is δr = 1 m. The time dynamics, equation (5) for the sensors and equation
(6) for the router, are implemented at each time step using ode45-differential equation solver in MATLAB. The
step time is set up at 0.01 sec.

For the simulation, just the methodology proposed for the mobile sensors, Section 4.1, and Algorithm 1 are
completely developed. We are currently working on the implementation of the sub-optimal controller for the
mobile router. Therefore as initial test, we consider also a potential function control approach for the router
where the potential function is given by

Ur(qr) =

L∑
i=1

U(qr,qsi), (24)
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where

U(qr,qsi) =

{
1
2ηr%

2
rs(qr,qsi) if %rs(qr,qsi) ≥ δr

2 ,

0 if %rs(qr,qsl) <
δr
2 ,

(25)

with %rs(qr,qsi) = ‖q(xy)
r − q

(xy)
si ‖. Thus, the controller law is defined as

ur = −k3
[
∂Ur(qr)

∂xr

∂Ur(qr)

∂yr
0

]T
+ k4ür, (26)

where k3 and k4 are positive constants.

For Algorithm 1, we select β1 = 0.295, β2 = 0.125, and β3 = 0.105, and for the sensors control law, equations
(13) and (14), we set k0 = k1 = 0.75. In the case of the mobile router controller, equation (26), k3 = 0.95 and
k4 = 0.85 and in equation (25) ηr = 0.425. Figure 4 presents the 3-D view (parts (a) and (c)) and 2-D view
(parts (b) and (d)) at two different time instants during the simulation. After 35 seconds, Figures 4(a) and 4(b),
the heterogeneous network arrives to the first target and it is on its way to the second target at time equal to
40 seconds, Figures 4(c) and (d).

Even though we do not implement the methodology for the mobile router, Section 4.2, we calculate and plot
at each time instant the proposed total reward term Υ(qr,ur) for the mobile router given in equation (18). We
assume τ = 0.275, η = 0.5, and a = b = c = 0.5. In fact, Figure 5(a) shows its plot. Also, the distance of each one
of the sensors respect to the mobile router are presented in Figure 5(b). Around the time equal 38 seconds, the
distances to the sensors grow and then the reward function decays drastically to a value of 5. On the contrary,
the reward grows when the distances to the sensors decays as it can be checked at time equal around 5 seconds
and around 30 seconds. Therefore, our proposed total reward term can be used as a based for the sub-optimal
controller detailed in Algorithm 2.

6. CONCLUSION

This paper exploits the heterogeneity of a robotic network made of ground mobile sensors, e.g., OctoRoACHes,
and aerial mobile routers, e.g., quadrotors, that is deployed to take measurements of multiple targets in a
cluttered environment. Moreover, the platform and the field-of-view geometry just for the case of the ground
sensors is taking in count in this work. Maintaining connectivity among the network members and a fixed base
station is considered as part of the constraints for the design of the motion controller for the set of the network.
Indeed, an adaptive potential field method is employed to coordinate the mobile sensors, while a sub-optimal
controller based on the maximization of a reward function is formulated to move the mobile routers guaranteeing
the inter-sensor communication coverage and the communication with the base station. Furthermore, a 3-D
environment for simulation purposes has been created to test the potential field method proposed in this work.
Future work will focus on implementing first in simulation the sub-optimal control algorithm for the mobile
routers. Afterwards, an experimental verification of the proposed controllers will be implemented using the
Marhes Lab heterogeneous robotic network.
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