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Abstract—The problem of cooperative track detection by a
dynamic sensor network arises in many applications, including
security and surveillance, and tracking of endangered species.
Several authors have recently shown that the quality-of-service of
these networks can be statically optimized by placing the sensors
in the region of interest (ROI) via mathematical programming.
However, if the sensors are subject to external forcing, such as
winds or currents, they may be rapidly displaced, and their
quality-of-service may be significantly deteriorated over time. The
novel approach presented in this paper consists of placing the
sensors in the ROI based on their future displacement, which can
be estimated from environmental forecasts and sensor dynamic
models. The sensor network deployment is viewed as a new
problem in dynamic computational geometry, in which the initial
positions of a family of circles with time-varying radii and positions
are to be optimized subject to sets of algebraic and differential
equations. When these equations are nonlinear and time-varying,
the optimization problem does not have an exact solution, or
global optimum, but can be approximated as a finite-dimensional
nonlinear program by discretizing the quality-of-service and the
dynamic models with respect to time. Then, a near-optimal solu-
tion for the initial sensor positions is sought by means of sequential
quadratic programming. The numerical results show that this
approach can improve quality-of-service by up to a factor of five
compared to existing techniques, and its performance is robust to
propagated modeling and deployment errors.

Index Terms—Cooperative, coverage, current, deployment, de-
tection, network, ocean, optimization, sensors, sonobuoy, target,
track, tracking, velocity field.

I. INTRODUCTION

T HE problem of cooperative track detection by a dynamic
sensor network arises in many applications, such as, mon-

itoring of oceanic [1] or atmospheric features [2], tracking of en-
dangered species [3] or marine fish [4], and in tracking-and-de-
tecting potential security threats, such as underwater vehicles
or divers [5]. Distributed fields of passive sensors can surveil
large regions of interest at moderate cost and for prolonged
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periods of time [6]–[8]. However, it has long been recognized
in practice that if the sensors are deployed in a dynamic envi-
ronment, such as a water body or the atmosphere, they can be
rapidly displaced by currents or winds, and experience a signif-
icant loss in coverage and tracking performance [9], [10]. This
paper presents a novel sensor deployment approach in which the
quality-of-service of the sensor network over a desired period of
time is formulated as an integral objective function of the sen-
sors’ positions and ranges, and is optimized subject to the sensor
network dynamics using a direct-shooting method. By this ap-
proach, the quality-of-service of nonmaneuverable sensor net-
works can be significantly improved and their operability pro-
longed by several days, without any changes to the sensor design
or instrumentation.

The ability of a sensor network to detect target tracks depends
on its area coverage and on its track coverage, both of which
have received considerable attention in the literature [11]–[17].
Area coverage is defined as the union of the areas representing
the sensors’ fields-of-view (FOV), divided by the area of the
region of interest (ROI) [15]–[17]. Track coverage refers to the
network’s ability to detect target tracks in the ROI by obtaining
multiple independent detections at different moments in time
[11]–[14]. The problem of track detection, which was first
considered in [11], is of interest in cost-effective collaborative
sensor networks (e.g., low-cost, passive sensors) that are de-
ployed to search for a moving target. Each sensor is designed
with a limited autonomous detection capability, and is subject
to frequent false alarms. Therefore, in order to report reliable
target detections, the information from multiple independent
detections is combined with a spatio-temporal model of the
target track, in an approach known as track-before-detect [18].
In this approach, a confident network-level detection decision
is made only after a target track is estimated and, subsequently,
tracking information is provided concurrently with detection
reports. By choosing a suitably sized ROI, targets can be as-
sumed to move at a constant speed and heading, and tracks can
be modeled as straight lines [11]–[14]. Then, track coverage
is defined as a measure of the tracks detected by the sensor
network, divided by a measure of all possible tracks through
the ROI [13].

Previous studies considered the problem of placing or reposi-
tioning a sensor network performing cooperative track detection
in the ROI by static optimization [11], [13]–[15], [19]. However,
when the sensor network is dynamic its quality-of-service is a
function of time, and must be optimized subject to the sensor
network’s equation of motion. This paper shows that by formu-
lating area and track coverage as instantaneous functions of the
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sensors’ ranges and positions the network’s quality-of-service
can be integrated with respect to time. Then, the sensor network
deployment can be viewed as a new problem in dynamic com-
putational geometry in which the initial positions of a family of
circles with time-varying radii and positions are to be optimized
subject to static and dynamic constraints comprised of sets of
nonlinear algebraic and differential equations, respectively.

The optimal deployment (OD) approach is presented in
Section IV, and is applied to an ocean sensor network com-
prised of drifting sonobuoys equipped with passive acoustic
sensors in Section VI. Sonobuoys provide a popular means for
collection of remote ocean data over large regions of interest
and, possibly, over large time scales [20]. However, current-in-
duced drifting has been shown to rapidly displace networks
of sonobuoys, deteriorating their quality-of-service especially
near coastlines or in regions of strong ocean currents [9], [20].
Recently, a model was developed and experimentally validated
in [9] to simulate the drift of free-floating sonobuoys within a
deployed network in the ocean from the current velocity field.
In Section VI-A, this sonobuoy model is combined with a
model of the current velocity field forecast to obtain a nonlinear
time-varying equation of motion for the sensor network. In
Section VI-B, a model of effective sensor range as a function of
time and position is obtained by geoacoustic inversion, using a
Bayesian network model trained with an underwater acoustic
range-dependent parabolic equation [21].

The effectiveness of the OD approach is demonstrated by
simulating networks of sonobuoys that are placed in the ROI
near the New Jersey coast, using real current measurements
obtained by a Coastal Ocean Dynamics Applications Radar
(CODAR) at the Coastal Ocean Observation Lab of Rutgers
University (COOL) [22]. The robustness of the OD solutions
is investigated via Monte Carlo (MC) simulation, using the
stochastic robustness analysis (SRA) approach reviewed in
Section V. The numerical results in Section VII show that the
quality-of-service of drifting sensor networks can be signif-
icantly improved compared to static optimization [13], grid
[23], and random [24], [25] deployments. Additionally, the
optimal sensor network performance is robust to propagated
uncertainties, such as, deployment errors, and errors in the
current velocity field and effective sensor range models.

II. BACKGROUND ON TRACK COVERAGE AND

GEOMETRIC TRANSVERSALS

The quality-of-service of sensor networks performing coop-
erative track detection, referred to as track coverage, was re-
cently formulated as a geometric transversals problem in [13]
and [26]. In many tracking applications, the FOV of each sensor
can be modeled as a circle, referred to as binary omnidirectional
sensor model, and targets can be assumed to move at constant
speed and heading along straight tracks, inside a suitably sized
ROI [11], [18], [27], [28]. Under these assumptions, a target
track that is cooperatively detected by sensors in a network
of sensors is a line transversal of the family of circles rep-
resenting the sensors’ FOV. A set of geometric objects in is
said to have a -transversal when all the objects are simultane-
ously intersected by a -dimensional flat or translate of a linear
subspace [29]. A line transversal with , and ,

Fig. 1. Example of line transversals for a family of � � � circles and � � �

(adapted from [29, p. 182]).

also referred to as stabber, is a straight line that intersects at
least members of a family of objects. For example, stabbers
of a family of five circles, with , are shown in Fig. 1. While
considerable attention has been given to establishing the neces-
sary and sufficient conditions for the existence of transversals,
algorithms for finding -transversals or for constructing a space
of transversals have been obtained only in a few special cases
[29]. In [30], an algebraic decision tree methodology was de-
veloped to find a single stabber for a translates family of line
segments in , or equal circles in . In [13] convex analysis
was used to construct cone representations of sets of stabbers for
a nontranslates family of circles in .

Using the cone representation, a Lebesgue measure corre-
sponding to the cone’s opening angle can be assigned to a set of
stabbers, and computed as a function of the circle’s radius and
position [13]. By assuming that each target moves at constant
speed and heading and may be detected at any time inside the
ROI, the temporal nature of the target motion can be ignored.
Then, given a set of static sensors, a measure of the set of
stabbers or tracks detected by the sensor network can be ob-
tained and, possibly, optimized with respect to their positions
in the ROI [13]. It was also shown in [13] that the measure of
all possible tracks through the ROI is a constant that can be
determined from the ROI’s dimensions and, thus, may be ig-
nored in the optimization. In applications where there is no prior
knowledge of the target tracks, track coverage is directly pro-
portional to the probability of track detection, through a known
constant [13]. Thus, when the track’s parameters are uniformly
distributed over their ranges, optimizing track coverage is equiv-
alent to optimizing the probability of track detection in the ROI,
as proven in [13]. In the next section, the problem of track de-
tection for mobile sensor networks is formulated by adjoining
the sensors’ equation of motion to the optimization of the area
coverage and track coverage integrated over time.

III. PROBLEM FORMULATION

This paper presents a novel sensor deployment problem in
which the area and track coverage of a drifting sensor network
are maximized over time by determining the optimal initial posi-
tions of the sensors in the ROI. The sensor network is deployed
to cooperatively detect moving targets in the ROI, ,
represented by a fixed rectangle , over a fixed
time interval . It is assumed that , and
are chosen such that the targets move at a constant speed and
heading in . Then, every target track in can be represented
by a ray or half line with heading , and -intercept .
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Since there is no prior knowledge of the target tracks, the track
parameters and have a uniform probability distribution over
their range. Thus, assuming all targets traverse during the time
interval , the track coverage of the network at any time

is directly proportional to its probability of track detection,
as shown in [13]. Let the FOV of the th sensor in the network,
located at at time , be a closed
and bounded subset of the ROI, denoted by . The ge-
ometry and dimensions of depend on the physical principles
underlying the measurement process, and on the local environ-
mental conditions. In this paper, is as-
sumed to be a circle of time-varying radius , centered
at . Then, the th sensor in the network detects a target track

at time if and only if the track intersects its FOV, i.e.,
, and is a stabber of [29]. Let

the FOVs of all sensors in the network be denoted by the set
. Then, a target track that is coop-

eratively detected by sensors in the network during the time
interval is a stabber of . Since the target tracks are uni-
formly distributed and may intersect members of at any
time during , the set of all stabbers of for all
represents the set of all tracks detected by the network.

Then, as shown in Section IV, the quality-of-service of a net-
work performing cooperative track detection can be expressed
as an integral objective function

(1)

that represents the weighted sum of track and area coverage
objectives over time, as a function of the sensors’ positions,

, and ranges, . The
terminal cost

(2)

can be used to specify desired final sensor positions, . When
the sensors are placed in a water body or in the atmosphere,
their positions change over time due to the current or wind ve-
locity field in . Using environmental models and forecasts,
the sensors’ dynamics can be modeled by an equation of mo-
tion comprised of independent systems of ordinary differen-
tial equations

... (3)

where is the sensor network state, and
denotes the sensor network’s initial conditions.

In this paper, the sensor network’s equation of motion (3)
is nonlinear and time-variant (NLTV), and is obtained using
the methodology in Section VI-A. Since the sensors have no
on-board actuators, their trajectories and performance in
depend solely on their initial positions, and constitutes the
network decision vector. Therefore, is to be optimized with
respect to , subject to the network dynamics (3), and the
model of effective sensor range .

The resulting dynamic optimization problem constitutes
a new problem in dynamic computational geometry ([31, p.
1117],) pertaining to a family of circles with time-varying radii
that move in according to an NLTV equation of motion
(3). As shown in the next section, an approximate solution
can be determined by transcribing the optimization of the
integral objective function (1) into a nonlinear program (NLP)
that is solved by sequential quadratic programming (SQP) to
determine the optimal decision vector, . The methodology,
presented in the next section, is applied to an ocean sensor net-
work in Section VI. Since the models and the execution of the
sensors’ deployment are both subject to errors, the robustness
of the OD approach presented in the next section is verified in
Section VII-B using the method reviewed in Section V.

IV. METHODOLOGY

The quality-of-service of sensor networks performing coop-
erative track detection, represented by track and area coverage,
has received considerable attention in the literature [13]–[17].
These previous studies considered the problem of placing a
static sensor network in such that its ability of obtaining
independent detections is maximized. However, if the sensor
network is dynamic, e.g., is subject to displacement or drift in
its environment, after the initial placement its coverage can be
significantly decreased over time (Section VII). The method-
ology presented in this paper overcomes this limitation by
optimizing an integral objective function, representing the total
quality-of-service of the network over the time interval ,
subject to the equation of motion (3). The objective function
is defined as a weighted sum of instantaneous track coverage,

, and instantaneous area coverage, , integrated over

(4)

where and are user-defined constants used to weigh
the two objectives. The instantaneous track and area coverage
functions for a moving sensor network are derived in this sec-
tion, and the integral objective function (4) is optimized using
the direct-shooting method presented in Section IV-A.

The geometric-transversals approach presented in [13], and
reviewed in Section II, is adopted here to derive as a function
of time. This approach leads to a track coverage measure that is
a function of the sensors’ effective ranges and positions and,
therefore, can be integrated with respect to time and optimized
subject to a dynamic constraint, (3). Let the inertial -frame
of reference be placed along two sides of , with the origin

at the lower left corner, such that all target tracks tra-
verse in the positive orthant . As shown in Appendix I, the
set of stabbers of a circle in , with

-intercept , can be represented by the cone that is finitely
generated by the following unit vectors

(5)
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Fig. 2. Coverage cone ��� ���� � � of a sensor located at � , and generated
by the unit vectors �� and �� at time �.

and

(6)

where , and
. A cone is said to be

finitely generated by two unit vectors when it contains all of
their linear combinations [32]. Thus, the coverage cone of the
th sensor with origin at the intercept is defined as

(7)

and is illustrated in Fig. 2. Like the unit vectors and
is a function of the intercept , and of the th

sensor’s position and range at time .
The same unit vectors are used to determine the stabbers of

families of nontranslate circles, representing the FOVs of
distinct sensors. We order all unit vectors in based on the
orientation of the -frame. Here, two vectors are
ordered as if when these vectors are translated such that
their origins coincide, and is rotated through the smallest pos-
sible angle to meet , this orientation is in the same direction
as the orientation of the -frame [33]. Then, the set of stabbers
with -intercept can be obtained for a family of circles in

, as shown by the following result:
Proposition 4.1: The set of all stabbers of a family of circles

, through , is contained by
the finitely generated cone

(8)

where

(9)

Fig. 3. The � � �-coverage cones of a family of 	 � � sensors are shown at
two moments in time, � and � , for a sample intercept (indexed by 
) on each
axes.

and denotes the index set of . If , then
.

A proof is provided in Appendix II. The cone
contains the set of tracks detected by a family of sensors at
time , and is referred to as -coverage cone. The opening angle

of the -coverage cone is a Lebesgue measure over the set of
line stabbers of [13], and is obtained by the cross product

(10)

with

(11)

where and
for . In the above equations, the time

argument is omitted for brevity, and the indices and are ob-
tained from (9). The Heaviside function guarantees that
if , the opening angle of the coverage cone is equal to
zero.

By placing a second inertial frame of reference along the
remaining sides of , Proposition 4.1 can be applied to stab-
bers that intercept the , and axis at , and , re-
spectively, as shown in Fig. 3. The opening angles of the cor-
responding -coverage cones are denoted by , and , re-
spectively, and are illustrated in Fig. 3 for . The
set of tracks traversing and intersecting at least circles in

is approximated by the union of the -coverage cones over
a finite set of intercept values that are indexed by the super-
script . The intercept values are obtained by discretizing the
perimeter of the ROI, , using a constant interval, . Then,
as shown in Appendix III, the following track coverage function
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is a Lebesgue measure on the set of tracks that intersect at least
circles in at time

(12)

where is the binomial coefficient choose (Appendix III),
the summation is the sum over all
distinct integer -tuples satisfying ,
and denotes the th -subset of , at time [34]. The
proof is based on the principle of inclusion-exclusion [13], and
is shown in Appendix III. The authors recently showed that
the computational complexity of the Lebesgue measure (12)
for static sensors is , where
[35]. Since integration is a linear operation, the computa-
tional complexity of integrating (12) numerically over time is

, where is the number of collocation
points (Section IV-A). Thus, the computation time increases
significantly as the number of sensors , and the parameter
increase.

The area coverage of a sensor network is defined as the union
of the areas representing the sensors’ FOVs divided by the area
of the ROI, i.e.,

(13)

where is the area covered by the th sensor [17]. If the sen-
sors’ positions, , and effective ranges, , are known and fixed,
(13) can be computed from their FOV using planar geometry.
When the sensors move subject to drift, however, and are
functions of time that obey the dynamic and equality constraints,
(3) and (45). Thus, a measure of area coverage is derived here
as a function of and , such that it can be integrated and opti-
mized over time. Let denote the instantaneous area coverage
of the sensors in at time provided none of the FOV intersect
each other or , i.e.,

(14)

where the Heaviside function, , ensures that only sensors
that lie entirely in contribute to . Now, let denote the in-
stantaneous area-coverage reduction due to intersecting circular
segments in , and denote the instantaneous area-coverage
reduction due to circular segments that intersect , as shown

Fig. 4. Sensors with reduced area coverage due to intersections between FOVs
or the perimeter, ��.

by the example in Fig. 4. Then, the effective area coverage of
the sensor network is

(15)

where and are all functions of and , as shown in
the remainder of this section and, thus, .

A circular segment is the portion of a circle that is delim-
ited by an arc, , and a chord, , with a central angle that
obeys , as shown in Fig. 5. Let denote the cen-
tral angle of the circular segment formed by the intersection of

and , at time , as shown in Fig. 6. From the proper-
ties of sectors [36], the area-coverage reduction experienced by
the th sensor due to an intersection with the th sensor (Fig. 6)
is given by

(16)

where

(17)

and all quantities are defined as in Figs. 5–7. Similarly, the
area-coverage reduction experienced by the th sensor, denoted
by , is obtained by exchanging the subscripts and in the
above equations. As shown in Fig. 6, each sensor experiences a
different reduction in coverage and, therefore, the total reduc-
tion is obtained by considering all sensors pairwise

(18)

See Appendix IV for a detailed proof.
The instantaneous area-coverage reduction due to sensors that

intersect is obtained by computing the area of each cir-
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Fig. 5. Geometry and notation of a circular segment for the �th sensor.

Fig. 6. Circular segments representing the area-coverage reductions � ���
(dark gray) and � ��� (light gray) experienced at time � by sensors � and � ,
respectively.

Fig. 7. Geometry and notation of circular segments in Fig. 6.

cular segment that lies outside of from the distance between
and the chord of the circular segment. Then, as shown in

Appendix IV, the total area-coverage reduction is

(19)

where , and
denote the distances between the th sensor

and the four axis in Fig. 3, which are indexed by .
By substituting (14), (18), and (19) into (15), the derivation of

the area coverage function is complete, and the integral objec-
tive function (4), representing the sensor network’s quality-of-
service over , is obtained with respect to and . Then, using
the methodology reviewed in the next subsection, (4) can be op-
timized with respect to the initial deployment , subject to the
equation of motion and the effective-range model.

A. Optimal Deployment Solution via Direct-Shooting Method

In this section, a methodology based on the direct-shooting
method is presented for computing the optimal sensor network
deployment, , that maximizes the quality-of-service (4), sub-
ject to equality and dynamic constraints. When the equation of
motion (3) is linear, a closed-form solution to can be ob-
tained from the systems’ transition matrix [37]. Typically, how-
ever, the current velocity field and, consequently, the equation
of motion (3) is NLTV, and must be determined numeri-
cally. Direct shooting is a numerical method that has been de-
veloped and proven effective for solving optimal control prob-
lems in which an integral objective function is to be optimized
subject to NLTV dynamic constraints [38]. The sensor-network
deployment problem considered in this paper, however, is not an
optimal control problem because the sensors have no on-board
actuators, and their state trajectories depend solely on their ini-
tial positions. Therefore, in this section, direct shooting is mod-
ified to determine numerically, by evaluating the equation of
motion, equality constraints, and objective function at discrete
points in time, known as collocation points, and by transcribing
the dynamic optimization problem into a NLP in . Between
collocation points, the equation of motion (3) is integrated by
Euler integration ([39], p. 77). Although higher order numer-
ical-integration routines, such as Runge–Kutta integration [39],
could potentially be applied, Euler integration was found to be
adequate for integrating (3), and more computationally efficient
(Section VII).

For equally spaced collocation points, let
denote a discrete time index, where , and

is the discretization interval. Then, the
optimization of an integral objective function subject to con-
tinuous-time dynamics can be transformed into a finite-dimen-
sional NLP by discretizing the objective function (4) with re-
spect to time

(20)

and by performing an implicit integration of the system dy-
namics (3), where , and . Using
Euler integration, the residuals

(21)

are computed at all collocation points, using only one function
evaluation per residual, and are driven to zero as part of the op-
timization process [40]. When the effective sensor-range model
is evaluated at every collocation point, , it is transformed into

-dimensional equality constraints

... (22)
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where , and the sensors’ positions and effective
ranges over time depend on . It follows that the solution
of the NLP

(23)

(24)

(25)

constitutes a near-optimal solution for the sensor-network dy-
namic optimization problem in continuous time. The NLP so-
lution can be obtained by SQP [41], [42], and it can be made
arbitrarily close to the optimal solution by using a higher order
integration rule and by increasing the size of the decision vector,
letting and , at the expense of the computa-
tion time [38]. Local minima may be avoided by using multiple
random initializations [41].

The effectiveness of the OD method presented in this section
is demonstrated through numerical simulations in Section VII.
Since this method utilizes approximate models of the sensors’
measurements and dynamics, presented in Section VI, the ro-
bustness of its performance to various sources of uncertainty is
analyzed in Section VII-B, using the approach reviewed in the
next section.

V. STOCHASTIC ROBUSTNESS ANALYSIS

The deployment method presented in the previous section
exploits models of the system’s components that influence the
sensor network’s performance over time, in order to optimize
its ability to perform cooperative track detection. Since models
are always subject to errors, robustness analysis is used here to
determine the possibility of inadequate performance in the face
of uncertainty [43], [44]. Unlike deterministic approaches, such
as singular-value analysis [45] and parameter-space methods
[46], the SRA approach presented in [43], [44] can be applied
to sensor network deployment because it relies on a statistical
description of parameter uncertainty, and does not require the
system’s dynamics and objectives to be linear and quadratic,
respectively. In a nonlinear dynamical system, such as (3), the
effects of uncertainty on the state are propagated stochasti-
cally over time, and can be considered as a random variable
with a time-varying probability density function (PDF) whose
higher moments (or variability) typically increase over time
[39]. MC simulations are a flexible and effective approach for
evaluating the effects of uncertainty propagation on the system
performance, such as response envelopes and confidence levels,
for one or more uncertain parameters with known PDFs.

The PDF models of parameter uncertainties are specified by
the user, based on system’s knowledge, experiments, and heuris-
tics. In ocean sensor networks, for example, the main sources
of uncertainty are the execution of the initial placement, ,
the current velocity field, and the environmental conditions that
influence the effective sensor range. Once is computed by
the methodology in Section IV, the sensors are deployed by
a surface or air vehicle and, thus, are subject to random er-
rors caused by navigation devices, and to random
bias errors caused, for example, by winds or human
errors. Current velocity forecasts and oceanographic field es-
timates that are used to derive the equation of motion (3), as

shown in Section VI-A, are subject both to modeling errors
and to measurement errors in assimilated data. In turn, these er-
rors cause random Gaussian errors in the current velocity field
and effective range that are denoted by and , respectively.
Thus, the actual initial positions, current velocities, and effec-
tive sensor ranges are considered as random variables defined as

(26)

(27)

(28)

respectively, in terms of the nominal variables, , and
(representing the surface currents experienced by the th

sensor), where (27) and (28) depend on the sensors’ positions
over time, , which are propagated stochastically in the pres-
ence of these uncertainties using a MC simulation. Every com-
ponent of the error vectors is independently and identically sam-
pled from a multivariate normal PDF with a mean and covari-
ance matrix specified by the user (as shown in Section VII-B).

In the MC simulation, the errors in (26) and (27) are prop-
agated through time by integrating the sensor network’s dy-
namics (3) with sampled initial conditions and current veloc-
ities . In each MC evaluation, the stochastic state history
and objective function are computed. Thus, given a sufficient
number of evaluations , the probability of adequate coverage

(29)

is estimated as the ratio between the number of evaluations with
adequate coverage over the total number of evaluations
[43], [47]. A confidence interval bounds the expected error of
this estimate, such that the true value (29) lies in an interval

with probability

(30)

where is the confidence coefficient [43], [48]. For example,
lies in with % confidence, and a 95% con-

fidence interval implies that in 95% of the MC evaluations,
lies in , i.e.,

(31)

where and are the estimated mean and standard devi-
ation of the objective function, respectively. Therefore, and

can be considered as performance robustness criteria.
The narrower is the confidence interval, the more precise is the
estimate , and the higher is , the more robust is the system
performance.

In the next section, the OD methodology presented in
Section IV is applied to an ocean sensor network comprised
of sonobuoys, and deployed to cooperatively detect passive
targets in a large ROI. The effectiveness and robustness of the
methodology are illustrated through numerical simulations in
Section VII.

VI. APPLICATION TO OCEAN SENSOR NETWORKS

Drifting surface sonobuoys provide a means for collection of
remote ocean data over large regions of interest and, possibly,
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over large time scales, at moderate cost [20]. Although many
sonobuoys designs have been developed over the years, drogued
drifting buoys have been shown to follow the path of a true
Lagrangian drifter and, therefore, are typically implemented
for ocean sensing [49]. Because their cost is relatively low,
sonobuoys are often considered expendable, and are launched
from surface vessels or air platforms at desired locations [10].
The most frequently used sonobuoys are omnidirectional and
operate at a fixed detection threshold that is decided a priori
by an operator, based on the environmental conditions and the
sensing objectives. The position of omnidirectional sonobuoys
in the ROI is crucial both to track detection algorithms [18] and
to the overall performance of the sensor network, and is often
assumed constant for simplicity [10]. However, current-in-
duced drifting has been shown to rapidly displace networks
of sonobuoys, especially near coastlines and regions of strong
ocean currents. Recently, a model was developed and experi-
mentally validated in [9] to simulate the drift of free-floating
sonobuoys within a deployed network in the ocean. This
sonobuoys field drift model (SFDM) uses the current velocity
field as an input, and solves the sonobuoy equilibrium equations
updating its position recursively over time.

In Section VI-A, a simplified version of SFDM is combined
with a model of the current velocity field forecast in order to
derive the sensor network’s equation of motion (3). A model
of effective sensor range is obtained in Section VI-B from
a range-dependent acoustic model and oceanographic field
estimates, specifying the equality constraints (22). Then, the
methodology presented in Section IV is used to determine the
optimal sensor deployment, such that the ability of the network
to perform cooperative detections in is maximized over the
time interval . The results, presented in Section VII, show
that this methodology improves track and area coverage by up
to a factor of five compared to existing techniques.

A. Equation of Motion of Lagrangian Drifting Sonobuoys

The sonobuoy equation of motion is based on the theory of
hydrodynamic array models, which was extended to horizontal
line sensor arrays in [50]. The buoy and the drogue are approx-
imated by two spheres that are connected by a flexible cable
(or tether) of negligible mass, through their centers of mass, as
schematized in Fig. 8(a). The total drag on a sphere is given by
the steady-state solution to Stokes’ Problem along the local cur-
rent velocity vector

(32)

where is the water density, is the sphere’s drag coefficient,
is its cross-sectional area, and is the magnitude of the rel-

ative velocity vector. Experimental results have shown that the
vertical current velocity profile can be assumed to take the form
in Fig. 8(a), where each sphere experiences a constant but dif-
ferent current denoted by a superscript for the buoy, and

for the drogue [9]. The local current velocity vectors ex-
perienced by the buoy and the drogue of the th sensor can be
resolved into the and components in the plane [Fig. 8(b)],

Fig. 8. Modeling of a drogued drift buoy (a) positioned at � (b), and subject
to local ocean current velocities, ��� and ��� .

such that . Therefore, the relative velocity vector
is defined as

(33)

where is the sonobuoy’s velocity in
inertial frame, and the current velocity vector is a function of
time and position.

Assuming the sonobuoy is at equilibrium along its entire tra-
jectory, the external force on the drogue must be equal and op-
posite to that on the buoy at all times, i.e., . Since
(32)–(33) apply to both the buoy and the drogue, the force bal-
ance equation can be written as

(34)

(35)

by resolving the relative velocities in their and components.
Then, the equation of motion of the th sonobuoy is obtained by

a few simple manipulations. Letting ,

(34) and (35) can be written as
and , respectively, and from (33)
the velocity of the sonobuoy in inertial frame can be written as

(36)

where is a known constant parameter, and and are
the current velocity components. In practice, the local current
velocity experienced by the drogue is a fraction of the surface
velocity experienced by the buoy and, thus, can be modeled as

, where the parameter
is determined from experiments, and the surface current is
obtained from a model of the ocean velocity forecast in , as
shown below. Then, (36) simplifies to

(37)

where , and the ar-
gument represents the dependency on the initial conditions.
For simplicity, hereon all sonobuoys are assumed to have the
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Fig. 9. Point-mass trajectories obtained from the neural network model and from CODAR measurements in an ROI with longitude coordinates ����� �� ���� ��
and latitude coordinates ��	�
 �� ��� �� plotted in a black solid line.

same size and drag coefficients. In order to obtain the sensor net-
work’s equation of motion (3), (37) is combined with a neural
network model of the velocity forecast in .

A forecast of the ocean current velocity field over can be
obtained by oceanographic models with assimilated data [51]. A
forecast is a future prediction that is initialized with present esti-
mates, and is obtained from physical models and data via state-
estimation techniques, as reviewed in [51] and [52]. The data
consists of past measurements of the ocean’s bathymetry, cir-
culation systems, and oceanographic field information, as well
as of real-time measurements of the ocean’s currents that may
be obtained via satellite [53] or via CODAR [22]. Typically, a
forecast of the current field consists of a multidimensional array
containing estimated values of the components of the current ve-
locity vector, , at sample points in space and time. The equa-
tion of motion (3), however, requires a continuous representa-
tion in space and time, i.e., for and . Although
tabular data representations can potentially be incorporated by
combining them with an interpolation routine, this approach
typically leads to problems that are computationally intractable
[54]. One approach that has been presented to model the ocean
current data and circumvent these problems, is to first process it
by open-boundary model analysis [55], and then to represent it
by B-splines basis functions [56]. In this paper, a compact func-
tional representation of the current velocity forecast is obtained
by means of a neural network function approximator. The ad-
vantages of neural networks over B-splines are that they require
fewer parameters, and can be obtained in one step, without pre-
processing the velocity forecast [57]–[59]. Also, they are found
to be very effective at smoothing noisy measurements, and at
generalizing in domains with sparse data [60], [61].

Assume there exists a continuously differentiable function
that approximates the spatial and temporal char-

acteristics of the current velocity field over , during [56].
Then, if , where ,
the buoy’s current velocity vector is , at any
sensor location . The five-dimensional array con-
taining the surface-current forecast is used to form a training
set , containing the value of at the
location , and at the time instant , for sample points in .

Then, can be used to approximate the function by means
of a feedforward neural network

(38)

with two linear output neurons, and one hidden layer of sig-
moidal functions represented by the operator

(39)

where is the input to the hidden layer, and
. The adjustable parameters or weights

and , and the input and output bi-
ases, and , are determined from by a
Bayesian regularization backpropagation algorithm (“trainbr”
[62]) that minimizes a linear combination of neural network
squared errors and weights, by means of a Levenberg–Mar-
quardt optimization routine [61], [63]. Regularization refers to
the Bayesian comparison of alternative models of the data, in
this case in the form (38), that are obtained by different choices
of parameters. Bayes’ rule is used to infer the normalizing con-
stants in the combination of multiple models, and the parameters
are determined by maximizing their posterior probability given
the data . As a result, a model (38) with excellent generaliza-
tion properties can be obtained even in the presence of noisy
data [61]–[63].

This approach is verified by training the neural network
model (38), with , using real CODAR measurements
of the ocean currents near the New Jersey coast obtained by
COOL [22] at Rutgers University over a period of five days.
A snapshot of the current velocity field is shown in Fig. 9 by
plotting sample vectors whose length is proportional to the
velocity’s magnitude, at a representative moment in time. The
database of CODAR measurements was sampled to produce
a training set with samples, and the remaining
data was used to validate the neural network model. Fig. 10
shows a comparison between the neural network output, , and
the measured velocity components drawn both from training
and validation data, at 600 sample locations, and hr.
The neural network approximation of the velocity components

and [defined in Fig. 8(b)] as a function of position
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Fig. 10. Comparison of neural network approximation and measured velocity
components at 600 sample locations in the ROI, at time � � ��� hr.

at different moments in time is plotted in Fig. 11, with the
CODAR measurements superimposed on the surface in black
dots to illustrate the effectiveness of the approximation. The
approach is also validated by comparing the trajectories of
point masses placed in the velocity field modeled by the neural
network (38), to those obtained using the CODAR database
combined with a cubic-spline interpolation routine (“trainbr”
[64]). Each point mass is randomly placed in the ROI and al-
lowed to drift according to a second-order Newtonian dynamic
model [1] for a period of five days. As shown by the three
examples in Fig. 9(a), and by the higher resolution example
in Fig. 9(b), the trajectories obtained with the neural network
approximator are very close to those obtained from the real
CODAR measurements.

Finally, the sensor network’s equation of motion (3) is ob-
tained by combining the sonobuoy model (37) with the current
forecast model (38). Then, the effective range of each sensor
in the network is modeled as a function of the sensor position

that is obtained from oceanographic field information and an
acoustic propagation model, as shown in the next section.

B. Model of Effective Sensor Range

The field-of-view of many low-cost wireless sensors, in-
cluding passive single-hydrophone onmidirectional sensors that
are commonly installed on sonobuoys, can be approximated
by a circle centered at the sensor position [25]. The circle’s
radius is referred to as effective range, and represents the
maximum range of a target that would cause the received signal
to exceed the detection threshold. When the th sensor declares
a detection, the target can be assumed to be closest to than
to any other sensor, and the th sensor receives the highest
signal in the network [10]. Range-dependent parabolic equation
(PE) models are the most accurate methods for capturing the
influence of environmental conditions on acoustic propagation
loss and the received signal in the ocean. But, because they rely
on numerical integration and known boundary conditions, PE
models do not provide estimates of effective range as a function

of spatial coordinates. Instead, underwater acoustic PE models
have recently been used in the literature to train neural or
Bayesian networks to perform efficient geoacoustic inversion,
and obtain the effective-range model, [65], [66]. In
[66], the Bayesian network (BN) underwater acoustic model
was shown to outperform a neural network model trained with
the same data in both accuracy and flexibility. Thus, in this sub-
section, the BN approach presented in [66] and [67] is applied
to obtain the effective-range model from the PE solution, the
oceanographic fields estimates in , and the sonar equation.

A range-dependent PE model based on the split-step Padé ap-
proximation solution can be used to obtain a numerical solution
to the far-field equation

(40)

which holds in each range-independent region [21], where
is the density, and is the complex wave number, which de-
pends on the attenuation, the circular frequency, and the sound
speed [21]. In this model, range dependence is handled accu-
rately by applying an energy-flux conservation correction at the
vertical interfaces between regions, as the environmental condi-
tions vary with range. Using the reference value of 1 Pa, the
propagation loss is defined as

(41)

and is computed from the PE solution in units of dB. From (40)
and (41), is a function of the target’s range and depth ,
and, through the parameters and , it is influenced by the target
frequency , and by the ocean environmental conditions, such
as, the bottom sound speed , bottom density , and sea-floor
profile [21].

A BN acoustic model obtained from (40) can be used for
geoacoustic inversion, for example, by inferring environmental
parameters or the target’s range from the propagation loss
[65]–[67]. A BN model is a directed acyclic graph that can be
learned from data in order to obtain a convenient factorization
of the joint multivariate probability mass function (PMF) of the
sensor variables [68]. Based on the physical model (40), the
set of acoustic sensor variables, referred to as BN universe, is
defined as . The sensor variables
are discretized using equal-width discretization [69], which
has been shown to outperform other approaches in [66]. Then,
the BN acoustic data is obtained by solving (40) repeatedly
by means of the range-dependent acoustic model [21], under
all possible combinations of discrete sensor variables’ values.
This data is divided into a training set and a validation set.
The training set is used to learn the structure and parameters
of the BN, by means of the K2 greedy-search algorithm [70]
and the expectation-maximization (EM) algorithm [71], [72],
respectively. The validation set, which is not used for learning,
is then used to test the effectiveness of the BN model by
estimating one or more sensor variables from known values of
other variables in .

The BN acoustic model implemented in this paper was
learned from a training set with 30 000 PE solutions, and was
validated with 10 000 PE solutions that were not used for
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Fig. 11. Neural network approximation of the velocity components as a function of position at (a) � � �� hr and (b) � � ��� hr, with available CODAR
measurements superimposed in black dots.

Fig. 12. Acoustic propagation loss � estimated by the BN model (b) and by
the range-dependent acoustic model (a).

learning (see [66] for more details). The resulting BN acoustic
model is found to compute correctly in approximately 95%
of solutions in the validation set, and to provide a reasonable
approximation of as a function of range and environmental
conditions, as shown by the example in Fig. 12. The corre-
sponding BN factorization is

(42)

where denotes the joint PMF of and , and
denotes the conditional PMF of given . All

PMFs in the above factorization are learned from data using the
EM algorithm. Subsequently, Bayes’ rule is applied to (42) in
order to infer , by computing its posterior PMF as a function
of and of the environmental conditions

(43)

where denotes marginalization with respect to [73].
The effective sensor range of the th sensor, , is defined as

the maximum value of that would cause the received signal
to exceed . Thus, the corresponding value of propagation loss

can be obtained from the passive sonar equation [74]

(44)

Fig. 13. Effective sensor range as a function of position (taken from [66]).

and substituted in (43), eliminating the range dependency on
propagation loss, where the target source level , depth , and
frequency are assumed known and constant. The directivity
index , the target-source directivity , and the detection
threshold are known sensor parameters that, for simplicity,
are assumed to be the same for all sensors. The noise level
in is assumed to be Gaussian, and can be estimated based
on the expected ship traffic [74]. The environmental conditions

, and depend on sensor position, and are obtained for
using field estimates given by the Harvard Ocean

Prediction System (HOPS) [75]. Then, the effective range

(45)

is estimated for , using (43)–(44). When necessary,
(45) can be filtered to smoothen the effects of sensor-variable
discretization and of noisy environmental conditions. The ef-
fective range function obtained for the ROI in Fig. 9(a), and im-
plemented in Section VII, is plotted in Fig. 13.

The effective ranges and positions of the acoustic sensors
determine the sensor network performance, because they de-
termine its ability to cooperatively detect targets in . Since
the sonobuoys move in according to the equation of motion
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TABLE I
COMPARISON OF SENSOR NETWORK DEPLOYMENT METHODS

derived in Section VI-A, their coverage is a function of time
and can be maximized over using the methodology pre-
sented in Section IV. As a result, the OD, , is found to sig-
nificantly outperform other deployment techniques, improving
quality-of-service by up to a factor of five, as shown in the next
section.

VII. RESULTS

The OD approach presented in the previous sections is
demonstrated on networks of sonobuoys that perform coopera-
tive track detection in the ROI, , of dimensions Km
and Km [shown in Fig. 9(a)], for a fixed . The
time-varying ocean current field in and around is simulated
using CODAR data provided by COOL at Rutgers University
[22]. The surface current speed and direction is retrieved from
the Doppler shift of the backscattered high-frequency signal
[22]. The current velocity forecast in is represented by the
feedforward neural network (38), and the system dynamics
are simulated by integrating (3) explicitly using a fourth-order
Runge–Kutta routine with variable stepsize (“ode45” [64]).
This routine was also used to verify that the Euler integration
used by the direct shooting method (Section IV-A) brings
about a negligible error. In Section VII-A, the effectiveness
of the approach presented in this paper is demonstrated by
comparing the quality-of-service of networks that are optimally
deployed to that of networks deployed by existing strategies,
namely, static optimization [13], grid [23], and random [24],
[25] deployments. In Section VII-B, the robustness of the OD
method is analyzed using the approach described in Section V.

A. Comparison With Existing Deployment Strategies

Previous techniques devised to deploy sensor networks for
cooperative track detection consist of static optimization [13],
grid [23], and random deployments [24], [25], [76]. Static opti-
mization via mathematical programming computes the sensors’
positions that optimize area and track coverage in , without ac-
counting for the sensors’ dynamics [13], [17]. Grid deployment
is popular in many wireless networks’ applications, and con-
sists of placing sensors at equally spaced positions in [23],
[77], [78]. Random deployment places sensors sequentially at

random, such that their FOV do not intersect, until a desired
level of coverage is achieved in the ROI [24]. Random deploy-
ment has been shown effective at placing sensor networks to
observe a target moving along a specified track in path-expo-
sure problems [76], [79] or at replenishing sensor networks to
improve coverage [25]. Recently, static optimization has been
shown to improve the coverage of static sensor networks by a
factor of two compared to random and grid deployments [13].
Nevertheless, as shown by the simulations in this subsection,
if the sensors are subject to external forcing, such as, winds
or ocean currents, their coverage deteriorates significantly over
time, regardless of their optimal initial performance.

The approach presented in this paper, deploys sensors based
on forecasted drift effects, by determining the optimal initial po-
sitions that maximize track and area coverage in , over a
time interval . In this subsection, the results of different de-
ployment strategies are simulated by integrating (3) explicitly,
and by computing the network’s track and area coverage, (12)
and (15), based on , and on the positions and ranges, and

, at every moment in time . The results of OD, static
optimization, grid, and random strategies applied to four net-
works of sonobuoys are summarized in Table I. The OD strategy
is shown to increase both the area and the track coverage of the
sensor networks by up to a factor of five compared to other de-
ployment techniques.

For comparison, the initial positions and trajectories of a
network with sonobuoys, and , are simulated
in Fig. 14 using all four deployment strategies. For this ex-
ample, computing the OD strategy required approximately four
hours on a Pentium 4 CPU 3.06 GHz computer. The resulting
quality-of-service, plotted over time in Fig. 15, illustrates that
the OD approach significantly improves performance compared
to other deployments, and maintains a high level of coverage
at all times. Conversely, sensors deployed by other techniques
may drift outside of , or cluster into low-coverage configura-
tions, as shown Fig. 14(b)–(d), such that their quality-of-service
deteriorates significantly shortly after deployment. As can be
expected, networks deployed by static optimization provide
a quality-of-service that is initially optimal but that rapidly
deteriorates over time, due to drift, eventually approaching
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Fig. 14. State trajectories of the sensor networks in Fig. 15 initially placed by (a) OD, (b) static optimization, (c) grid, and (d) and random techniques.

Fig. 15. Objective-function time history for different deployment strategies,
� � ��� � � �, and �� � � days.

that of grid and random deployments. It can be seen that, by
optimizing quality-of-service over time, the OD approach can
effectively prolong the operability of a sensor network, without
any changes to the sensor design or instrumentation.

B. Performance Robustness Analysis Results

In this section, the robustness of the OD approach is analyzed
using the approach described in Section V. A MC simulation is
used to propagate uncertainties over time, by sampling Gaussian
models of errors in the sensors’ initial positions, , current ve-
locities, , and sensors’ ranges, . The means and standard
deviations of the simulated errors are chosen based on expert
knowledge [22], [25], [52], and are listed in Table II. The stan-
dard deviation of is computed as a percentage of the local
velocity magnitude [22]. Based on the approach in Section V,
a total of evaluations are conducted in order to
obtain a representative sample of the stochastic sensor state and
performance history from the MC simulation. From this sample,
mean performance metrics and confidence levels are computed
and compared to their zero-error or nominal counterparts. As an
example, in Fig. 16, the results of one MC evaluation are com-
pared to the nominal performance and sensor trajectories, which
are obtained by the OD approach for a network with ,
and . As can be expected, Fig. 16(b) shows that, in the
presence of the Gaussian errors listed in Table II, all three per-
formance measures are slightly decreased because the sensors
have deviated from the nominal OD trajectories [Fig. 16(a)].

Authorized licensed use limited to: DUKE UNIVERSITY. Downloaded on September 16, 2009 at 12:46 from IEEE Xplore.  Restrictions apply. 



1042 IEEE SENSORS JOURNAL, VOL. 9, NO. 9, SEPTEMBER 2009

Fig. 16. (a) The state trajectories and (b) performance of one MC evaluation
are compared to their nominal counterparts, for � � �� and � � �.

TABLE II
SIMULATED GAUSSIAN ERROR MODELS

Trajectory and performance envelopes are obtained by plot-
ting the results of all evaluations with respect to time, to de-
termine numerical bounds on these quantities in the presence of
propagated uncertainties. The effects of uncertainties on the ini-
tial and final sensor positions are shown in Fig. 17 by plotting
the frequency of occurrence of and for two networks that

Fig. 17. Frequency of occurrence of �� and �� for (a) five and (b) ten sensors
selected from two OD networks with � � �� and � � ��, respectively, �� �
��.

are deployed using OD, and are subject to the errors , and
. The envelopes of two sensor trajectories selected from a net-

work with and , shown in Fig. 18(a), illustrate that
when the aforementioned errors are propagated through time the
sensors’ trajectories, like the initial and final positions, can de-
viate significantly from their nominal counterparts. Also, as a
result, the quality-of-service of the sensor network is a random
variable with a time-varying PDF. Therefore, evolution of the
probability of track coverage is illustrated in Fig. 18(b)–(d) by
evaluating and plotting in parameter space, at three sample
moments in time (using the approach in Section VII-B). The per-
formance envelopes plotted in Fig. 19 represent the numerical
bounds on the sensor network coverage, and show that even in
the presence of propagated uncertainties networks deployed by
the OD approach significantly outperform networks deployed
by static-optimization, grid, or random strategies.

In Table III, the nominal performance measures are compared
to the mean performance measures that are computed by prop-
agating the errors in Table II. It can be seen that the maximum
average decrease in overall performance is 6.04%. Suppose the
acceptable decrease in performance is 5% (i.e., ). Then,
the estimated probability of adequate coverage, , varies from
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Fig. 18. Examples of state envelopes (a), and probability of track coverage in parameter space at � � � hr (b), � � �� hr (c), and � � �� hr (d), for an OD network
with � � �� and � � �.

Fig. 19. Performance envelopes for an OD network with � � �� and � � �.

0.8524 to 0.9868 (Table III). The narrow 95% confidence inter-
vals in Table III indicate that and are estimated with high

confidence from the MC evaluations (Section V). Based on these
results, it can be concluded that the performance of the OD ap-
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TABLE III
PERFORMANCE ROBUSTNESS RESULTS

proach is robust and, therefore, OD can potentially be used to
deploy sensor networks even in the presence of modeling and
measurement errors.

VIII. SUMMARY AND CONCLUSION

The problem of cooperative track detection by a dynamic
sensor network arises in many applications, including security
and surveillance, environmental and atmospheric monitoring,
and tracking of endangered species. Several authors have
recently shown that the quality-of-service of these networks
can be optimized by placing the sensors in the ROI via static
optimization. However, if the sensors are subject to external
forcing, such as, winds or currents, they may be rapidly
displaced and experience a significant loss in coverage and
tracking performance. This paper presents an OD approach that
treats the sensor network as a dynamic system, and optimizes
its quality-of-service over time by a direct-shooting method
that transcribes the dynamic optimization problem into an
NLP. An integral objective function is derived by a discrete
computational geometry approach that represents the area and
track coverage of the sensor network by unions of circular
segments and cones of line transversals (stabbers), respectively.

The OD approach is demonstrated through an ocean sensor
network application in which simulated networks of sonobuoys,
with no on-board controls, are deployed to track and detect
moving targets in the ROI near the New Jersey coast. The
sensor network’s equation of motion is obtained by com-
bining a sonobuoy field drift model with a neural model of
the current velocity forecast. A model of effective range as a
function of position is obtained by training a Bayesian network
with a range-dependent parabolic-equation model to perform
geoacoustic inversion. The numerical results show that the OD
approach improves quality-of-service by up to a factor of five
compared to static optimization, grid, or random deployments.
The possibility of inadequate performance in the face of uncer-
tainty is investigated by SRA. In this approach, uncertainties
are propagated through time by a MC simulation, and the
probability of adequate performance is obtained along with its
confidence level. These performance robustness criteria show
that the OD approach is robust to modeling and deployment
errors, and the probability that the performance decreases by
less then 5% is higher than 0.8524. The results also show that
by maximizing the quality-of-service over time, the approach
effectively prolongs the operability of the network, for example

delaying the need for replenishing the network, thus leading
to sensor networks that are considerably more cost effective
without changes to the sensor design or instrumentation.

APPENDIX I
COVERAGE CONE

Let denote a ray that intersects a circle
with radius , and centered at at time

, in . Consider any two points that lie on
and inside , and let denote their positions
relative to the origin of the coverage cone . By
construction, , and a vector joining the two
points will lie on the ray . Let and denote any two
positive constants. By definition of vector sum and subtraction
[33], if then has the same origin as and

. Thus, since lies on intercepts the axis at
the cone’s origin . If does not have the
same origin as and and, thus, does not intercept
the axis at . By definition (7), is the set of all
nonnegative combinations of the elements in . Since
and are two elements in , and any nonnegative combi-
nation of these two elements can be written as , with

, it follows that . In
the trivial case of , when only one point lies on
and inside , it follows that is tangential to .
In this case, it also follows that for
any , because belongs to an extremal of .
Finally, since denotes any ray with intercept that
intersects in , and provided
intersects the axis at , it also follows that any
that intersects both and the axis at is contained by

in (7).

APPENDIX II
PROOF OF PROPOSITION 4.1

This proof considers a family of nontranslate circles
with index set .

The results can be extended to higher by induction. The cov-
erage cone contains the set of all rays that intersect
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in , at time , where . Then, from set theory, the
set of tracks intersecting all circles in the family is given
by the following intersection:

(46)

From the properties of cones ([32, p. 70]), the intersection of a
collection of cones is also a cone and, thus, is a
cone. A vector representing a ray with the same slope and
origin lies in a cone if and only if lies in , since any
point on can be written as , with .

Consider a ray , where
, and thus can be represented by a vector
with constants . Then,

and, by the properties of vector sum, . Next, con-
sider a cone that is finitely generated by
two unit vectors and with , and as-
sume . By the properties of finitely generated cones [32],
defined as in (7), any vector with constants

must lie in . It follows that a ray with the same
slope and origin as must also lie in , since any point on

can be written as , with . Since is a linear com-
bination of and , it also follows that .

According to Proposition 4.1, choose and
. Suppose the unit vectors of can

be ordered as and . Then, the unit
vectors and can be ordered as follows:

(47)

or, more explicitly

(48)

Since the above order also implies , then
. Thus, from (46),

, provided and are
chosen subject to (47).

So far, it was assumed that . If the unit vectors of
are such that , then there are no vectors that can satisfy
the order , and

.

APPENDIX III
DERIVATION OF TRACK COVERAGE FUNCTION

First, we seek a Lebesgue measure on the set of tracks that
are detected by at least sensors in at time given by

(49)

where denotes the th -subset of at time , and the
number of possible -subsets is given by the binomial coef-

ficient choose , as shown in (49). Since is a union of
possibly disjoint cones, defined in (8), it may not be a cone [32],
and is computed using the principle of inclusion-exclusion [80],
such that

(50)

where

is a sum over all the distinct integer -tuples
satisfying . Also,

denotes a measure on the set. Since the right-hand side of (50)
is an intersection of cones, it also is a cone on which we can
impose the Lebesgue measure .

Now, consider the intersection of cones
inside the inner summation in (50). de-

notes the th -subset of at time , where is a positive
integer between 1 and , and is the total number of -sub-
sets in . By the properties of cones, this intersection is also a
cone, and represents the set of tracks through that intersect all
sensors in the family . Based
on the properties of -subsets, this set must contain
elements of and, thus, is a -subset of . From Proposi-
tion 4.1, the set of line transversals of through can be
represented by the -coverage cone .
Using the Lebesgue measure (10) on -coverage cones, (50) can
be written as

(51)

(52)

(53)

where is the number of elements in the union of -subsets
of , and is given by (10).

The set of tracks that traverse and are detected by at
least sensors is given by the union of all -coverage cones
with origins , and with opening angles
denoted by , and , respectively (Fig. 3). In order to
obtain representations that are computationally tractable,
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is discretized into increments of size , and
intercept values, indexed by , are considered. Using an appro-
priate transformation [13], (5)–(10) can be used to compute all
opening angles, ,
and , as a function of their origins and of the
sensors’ positions, , and ranges, , in the -frame. By
considering that every track in this union intersects two sides
of and belongs to two -coverage cones, and by shifting the
indices in order to consider intercepts at the corners only once,
the final track coverage function in (12) is obtained.

APPENDIX IV
DERIVATION OF AREA COVERAGE FUNCTION

Let denote the instantaneous area coverage all sensors
in with at time , as-
suming for , and
for . Then, when these assumptions are violated (Fig. 4), the
effective area coverage is given by (15), where and

are the instantaneous reductions due to
and for some , respectively. When

, the inequality

(54)

holds, where denotes the Euclidian norm. The area of the
circular segment representing the area-coverage reduction
experienced by the th sensor due to (Fig. 6),
can be written as (16) in terms of the effective range and
the central angle [36]

(55)

defined in Fig. 6, where is defined in Fig. 5, and can be written
in terms of the sensors’ effective ranges and positions by ap-
plying the law of cosines to the triangles in Fig. 7

(56)

Then, by substituting (56) into (55), the central angle (17) is ob-
tained, and can be substituted in (16) to obtain as a function
of the sensors’ effective ranges and positions. By multiplying

by the Heaviside function , the
area-coverage reduction is zero anytime the inequality (54) is
violated. The total area-coverage reduction of the sensor net-
work is obtained by considering all sensors in pairwise,
i.e.,

(57)

The above computation can be reduced by recognizing that
when the indices and are exchanged in (16), it can be easily
shown that

(58)

Thus, the reduction experienced by the th sensor due to
(Fig. 6) can be computed from , and the

total area-coverage reduction can be obtained from (18) solely
as a function of , and .

When , the area-coverage reduction experi-
enced by the th sensor is also given by the area of a circular
segment with the central angle (55), and the geometry shown
in Fig. 5. However, in this case, , now represents the distance
between and the side of intersected by . Adopting the
reference frames in Fig. 3, let the distance denote the dis-
tance between and the axes indexed by , such
that , and .
Then, the area-coverage reduction experienced by the th sensor
due to an intersection with the th axes is

(59)

is multiplied by the Heaviside function , such
that the area-coverage reduction is zero when does not
intersect the th axes. Thus, the total area-coverage reduction
can be written solely as a function of , and

, as shown in (19), by summing (59) over all
values of and .
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