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Abstract—This paper presents a model-based approach for
computing real-time optimal decision strategies in the pursuit-
evasion game of Ms. Pac-Man. The game of Ms. Pac-Man is an
excellent benchmark problem of pursuit-evasion game with mul-
tiple, active adversaries that adapt their pursuit policies based
on Ms. Pac-Man’s state and decisions. In addition to evading the
adversaries, the agent must pursue multiple fixed and moving tar-
gets in an obstacle-populated environment. This paper presents
a novel approach by which a decision-tree representation of all
possible strategies is derived from the maze geometry and the
dynamic equations of the adversaries or ghosts. The proposed
models of ghost dynamics and decisions are validated through
extensive numerical simulations. During the game, the decision
tree is updated and used to determine optimal strategies in real
time based on state estimates and game predictions obtained itera-
tively over time. The results show that the artificial player obtained
by this approach is able to achieve high game scores, and to han-
dle high game levels in which the characters speeds and maze
complexity become challenging even for human players.

Index Terms—Cell decomposition, computer games, decision
theory, decision trees, Ms. Pac-Man, optimal control, path plan-
ning, pursuit-evasion games.

I. INTRODUCTION

T HE video game Ms. Pac-Man is a challenging example of
pursuit-evasion games in which an agent (Ms. Pac-Man)

must evade multiple dynamic and active adversaries (ghosts), as
well as pursue multiple fixed and moving targets (pills, fruits,
and ghosts), all the while navigating an obstacle-populated
environment. As such, it provides an excellent benchmark prob-
lem for a number applications including recognizance and
surveillance [1], search-and-rescue [2], [3], and mobile robotics
[4], [5]. In Ms. Pac-Man, each ghost implements a different
decision policy with random seeds and multiple modalities that
are a function of Ms. Pac-Man’s decisions. Consequently, the
game requires decisions to be made in real time, based on
observations of a stochastic and dynamic environment that is
challenging to both human and artificial players [6]. This is
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evidenced by the fact that, despite the recent series of artifi-
cial intelligence competitions inviting researchers to develop
artificial players to achieve the highest possible score, existing
artificial players have yet to achieve the performance level of
expert human players [7]. For instance, existing artificial play-
ers typically achieve average scores between 9000 and 18 000
and maximum scores between 20 000 and 35 000 [8]–[13]. In
particular, the highest score achieved at the last Ms. Pac-Man
screen capture controller competition was 36 280, while expert
human players routinely achieve scores over 65 000 and in
some cases as high as 920 000 [14].

Recent studies in the neuroscience literature indicate that bio-
logical brains generate exploratory actions by comparing the
meaning encoded in new sensory inputs with internal repre-
sentations obtained from the sensory experience accumulated
during a lifetime or preexisting functional maps [15]–[19]. For
example, internal representations of the environment and of
the subject’s body (body schema), also referred to as inter-
nal models, appear to be used by the somatosensory cortex
(SI) for predictions that are compared to the reafferent sen-
sory input to inform the brain of sensory discrepancies evoked
by environmental changes, and generate motor actions [20],
[21]. Computational intelligence algorithms that exploit mod-
els built from prior experience or first principles have also been
shown to be significantly more effective, in many cases, than
those that rely solely on learning [22]–[24]. One reason is that
many reinforcement learning algorithms improve upon the lat-
est approximation of the policy and value function. Therefore,
a model can be used to establish a better performance baseline.
Another reason is that model-free learning algorithms need to
explore the entire state and action spaces, thus requiring signif-
icantly more data and, in some cases, not scaling up to complex
problems [25]–[27].

Artificial players for Ms. Pac-Man to date have been devel-
oped using model-free methods, primarily because of the
lack of a mathematical model for the game components. One
approach has been to design rule-based systems that imple-
ment conditional statements derived using expert knowledge
[8]–[12], [28], [29]. While it has the advantage of being sta-
ble and computationally cheap, this approach lacks extensibility
and cannot handle complex or unforeseen situations, such as,
high game levels, or random ghosts behaviors. An influence
map model was proposed in [30], in which the game charac-
ters and objects exert an influence on their surroundings. It was
also shown in [31] that, in the Ms. Pac-Man game, Q-learning
and fuzzy-state aggregation can be used to learn in nondeter-
ministic environments. Genetic algorithms and Monte Carlo
searches have also been successfully implemented in [32]–[35]
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to develop high-scoring agents in the artificial intelligence
competitions. Due to the complexity of the environment and
adversary behaviors, however, model-free approaches have had
difficulty handling the diverse range of situations encountered
by the player throughout the game [36].

The model-based approach presented in this paper over-
comes the limitations of existing methods [14], [37]–[39] by
using a mathematical model of the game environment and
adversary behaviors to predict future game states and ghost
decisions. Exact cell decomposition is used to obtain a graph-
ical representation of the obstacle-free configuration space for
Ms. Pac-Man in the form of a connectivity graph that captures
the adjacency relationships between obstacle-free convex cells.
Using the approach first developed in [40] and [41], the connec-
tivity graph can be used to generate a decision tree that includes
action and utility nodes, where the utility function represents a
tradeoff between the risk of losing the game (capture by a ghost)
and the reward of increasing the game score. The utility nodes
are estimated by modeling the ghosts’ dynamics and decisions
using ordinary differential equations (ODEs). The ODE mod-
els presented in this paper account for each ghost’s personality
and multiple modes of motion. Furthermore, as shown in this
paper, the ghosts are active adversaries that implement adaptive
policies, and plan their paths based on Ms. Pac-Man’s actions.

Extensive numerical simulations demonstrate that the ghost
models presented in this paper are able to predict the paths of
the ghosts with an average accuracy of 94.6%. Furthermore,
these models can be updated such that when a random behav-
ior or error occurs, the dynamic model and corresponding
decision tree can both be learned in real time. The game strate-
gies obtained by this approach achieve better performance
than beginner and intermediate human players, and are able
to handle high game levels, in which the character speed and
maze complexity become challenging even for human players.
Because it can be generalized to more complex environments
and dynamics, the model-based approach presented in this
paper can be extended to real-world pursuit-evasion problems
in which the agents and adversaries may consist of robots or
autonomous vehicles, and motion models can be constructed
from exteroceptive sensor data using, for example, graphical
models, Markov decision processes, or Bayesian nonparametric
models [2], [42]–[46].

The paper is organized as follows. Section II reviews the
game of Ms. Pac-Man. The problem formulation and assump-
tions are described in Section III. The dynamic models of Ms.
Pac-Man and the ghosts are presented in Sections IV and V,
respectively. Section VI presents the model-based approach to
developing an artificial Ms. Pac-Man player based on decision
trees and utility theory. The game model and artificial player
are demonstrated through extensive numerical simulations in
Section VII.

II. THE Ms. Pac-Man GAME

Released in 1982 by Midway Games, Ms. Pac-Man is a
popular video game that can be considered as a challenging
benchmark problem for dynamic pursuit and evasion games. In
the Ms. Pac-Man game, the player navigates a character named

Fig. 1. Screen-capture of the Ms. Pac-Man game emulated on a computer.

Ms. Pac-Man through a maze with the goal of eating (travel-
ing over) a set of fixed dots, called pills, as well as one or
more moving objects (bonus items), referred to as fruits. The
game image has the dimensions 224 × 288 pixels, which can
be divided into a square grid of 8 × 8 pixel tiles, where each
maze corridor consists of a row or a column of tiles. Each pill
is located at the center of a tile and is eaten when Ms. Pac-Man
is located within that tile [47].

Four ghosts, each with unique colors and behaviors, act as
adversaries and pursue Ms. Pac-Man. If the player and a ghost
move into the same tile, the ghost is said to capture Ms. Pac-
Man, and the player loses one of three lives. The game ends
when no lives remain. The ghosts begin the game inside a rect-
angular room in the center of the maze, referred to as the ghost
pen, and are released into the maze at various times. If the
player eats all of the pills in the maze, the level is cleared,
and the player starts the process over, in a new maze, with
incrementally faster adversaries.

Each maze contains a set of tunnels that allow Ms. Pac-Man
to quickly travel to opposite sides of the maze. The ghosts can
also move through the tunnels, but they do so at a reduced
speed. The player is given a small advantage over ghosts when
turning corners as well, where if a player controls Ms. Pac-
Man to turn slightly before an upcoming corner, the distance
Ms. Pac-Man must travel to turn the corner is reduced by up to
approximately 2 pixels [47]. A player can also briefly reverse
the characters’ pursuit-evasion roles by eating one of four spe-
cial large dots per maze referred to as power pills, which, for a
short period of time, cause the ghosts to flee and give Ms. Pac-
Man the ability to eat them [48]. Additional points are awarded
when Ms. Pac-Man eats a bonus item. Bonus items enter the
maze through a tunnel twice per level, and move slowly through
the corridors of the maze. If they remain uneaten, the items exit
the maze. A screenshot of the game is shown in Fig. 1, and the
game characters are displayed in Fig. 2.

In addition to simply surviving and advancing through
mazes, the objective of the player is to maximize the number
of points earned, or score. During the game, points are awarded
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Fig. 2. Game characters and objects. (a) Ms. Pac-Man. (b) Blinky: red.
(c) Pinky: pink. (d) Inky: blue. (e) Sue: orange. (f) Fruit: cherry.

when an object is eaten by Ms. Pac-Man. Pills are worth ten
points each, a power pill gives 50 points, and the values of
bonus items vary per level from 100 to 5000 points. When a
power pill is active, the score obtained for capturing a ghost
increases exponentially with the number of ghosts eaten in suc-
cession, where the total value is

∑n
i=1 100(2

n) and n is the
number of ghosts eaten thus far. Therefore, a player can score
3000 points by eating all four ghosts during the duration of one
power pill’s effect. For most players, the game score is highly
dependent on the points obtained for capturing ghosts. When
Ms. Pac-Man reaches a score of 10 000, an extra life is awarded.
In this paper, it is assumed that the player’s objective is to max-
imize its game score and, thus, decision strategies are obtained
by optimizing the score components, subject to a model of the
game and ghost behaviors.

III. PROBLEM FORMULATION AND ASSUMPTIONS

The Ms. Pac-Man player is viewed as a decision maker that
seeks to maximize the final game score by a sequence of deci-
sions based on the observed game state and predictions obtained
from a game model. At any instant k, the player has access
to all of the information displayed on the screen, because the
state of the game s(k) ∈ X ⊂ R

n is fully observable and can
be extracted without error from the screen capture. The time
interval (t0, tF ] represents the entire duration of the game and,
because the player is implemented using a digital computer,
time is discretized and indexed by k = 0, 1, . . . , F , where F
is a finite end-time index that is unknown. Then, at any time
tk ∈ (t0, tF ], the player must make a decision uM (k) ∈ U(k)
on the motion of Ms. Pac-Man, where U(k) is the space of
admissible decisions at time tk. Decisions are made according
to a game strategy as follows.

Definition 3.1: A strategy is a class of admissible policies
that consists of a sequence of functions

σ = {c0, c1, . . .} (1)

where ck maps the state variables into an admissible decision

uM (k) = ck[s(k)] (2)

such that ck[·] ∈ U(k), for all s(k) ∈ X .
In order to optimize the game score, the strategy σ is based

on the expected profit of all possible future outcomes, which is

estimated from a model of the game. In this paper, it is assumed
that at several moments in time, indexed by ti, the game can
be modeled by a decision tree Ti that represents all possi-
ble decision outcomes over a time interval [ti, tf ] ⊂ (t0, tF ],
where Δt = (tf − ti) is a constant chosen by the user. If the
error between the predictions obtained by game model and
the state observations exceed a specified tolerance, a new tree
is generated, and the previous one is discarded. Then, at any
time tk ∈ [ti, tf ], the instantaneous profit can be modeled as a
weighted sum of the reward V and the risk R and is a function
of the present state and decision

L [s(k),uM (k)] = wV V [x(k),uM (k)] + wRR[x(k),uM (k)]
(3)

where wV and wR are weighting coefficients chosen by the
user.

The decision-making problem considered in this paper is
to determine a strategy σ∗

i = {c∗i , . . . , c∗f} that maximizes the
cumulative profit over the time interval [ti, tf ]

Ji,f [x(i), σi] =

f∑
k=i

L [x(k),uM (k)] (4)

such that, given Ti, the optimal total profit is

J∗
i,f [x(i), σ

∗
i ] = max

σi

{Ji,f [x(i), σi]} . (5)

Because the random effects in the game are significant, any
time the observed state s(k) significantly differs from the model
prediction, the tree Ti is updated, and a new strategy σ∗

i is
computed, as explained in Section IV-C. A methodology is
presented in Sections IV–VI for modeling the Ms. Pac-Man
game and profit function based on guidelines and resources
describing the behaviors of the characters, such as [49].

IV. MODEL OF MS. PAC-MAN BEHAVIOR

In this paper, the game of Ms. Pac-Man is viewed as a
pursuit-evasion game in which the goal is to determine the path
or trajectory of an agent (Ms. Pac-Man) that must pursue fixed
and moving targets in an obstacle-populated workspace, while
avoiding capture by a team of mobile adversaries. The maze
is considered to be a 2-D Euclidean workspace, denoted by
W ⊂ R

2, that is populated by a set of obstacles (maze walls),
B1,B2, . . ., with geometries and positions that are constant and
known a priori. The workspace W can be considered closed
and bounded (compact) by viewing the tunnels, denoted by T ,
as two horizontal corridors, each connected to both sides of the
maze. Then, the obstacle-free space Wfree = W\{B1,B2, . . .}
consists of all the corridors in the maze. Let FW denote an iner-
tial reference frame embedded in W with origin at the lower
left corner of the maze. In continuous time t, the state of Ms.
Pac-Man is represented by a time-varying vector

xM (t) = [xM (t) yM (t)]
T (6)

where xM and yM are the x, y-coordinates of the centroid of
the Ms. Pac-Man character with respect to FW , measured in
units of pixels.
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Fig. 3. Control vector sign conventions.

The control input for Ms. Pac-Man is a joystick, or keyboard,
command from the player that defines a direction of motion
for Ms. Pac-Man. As a result of the geometries of the game
characters and the design of the mazes, the player is only able
to select one of four basic control decisions (move up, move
left, move down, or move right), and characters are restricted to
two movement directions within a straight-walled corridor. The
control input for Ms. Pac-Man is denoted by the vector

uM (t) = [uM (t) vM (t)]
T (7)

where uM ∈ {−1, 0, 1} represents joystick commands in
the x-direction and vM ∈ {−1, 0, 1} defines motion in the
y-direction, as shown in Fig. 3. The control or action space,
denoted by U , for all agents is a discrete set

U = [a1, a2, a3, a4] =

{[
0
1

]
,

[
−1
0

]
,

[
0
−1

]
,

[
1
0

]}
. (8)

Given the above definitions of state and control, it can be
shown that Ms. Pac-Man’s dynamics can be described by a
linear, ordinary differential equation (ODE)

ẋM (t) = A(t)xM (t) +B(t)uM (t) (9)

where A and B are state–space matrices of appropriate dimen-
sions [50].

In order to estimate Ms. Pac-Man’s state, the ODE in (9)
can be discretized, by integrating it with respect to time, using
an integration step δt << Δt = (tf − ti). The time index ti
represents all moments in time when a new decision tree is
generated, i.e., the start of the game, the start of a new level,
the start of game following the loss of one life, or the time when
one of the actual ghosts’ trajectories is found to deviate from the
model prediction. Then, the dynamic equation for Ms. Pac-Man
in discrete time can be written as

xM (k) = xM (k − 1) + αM (k − 1)uM (k − 1)δt (10)

where αM (k) is the speed of Ms. Pac-Man at time k, which
is subject to change based on the game conditions. The control
input for the Ms. Pac-Man player developed in this paper is
determined by a discrete-time state-feedback control law

uM (k) = ck [xM (k)] (11)

that is obtained using the methodology in Section VI, and may
change over time.

The ghosts’ dynamic equations are derived in Section V, in
terms of state and control vectors

xG(k) = [xG(k) yG(k)]
T (12)

uG(k) = [uG(k) vG(k)]
T (13)

that are based on the same conventions used for Ms. Pac-
Man, and are observed in real time from the game screen.
The label G belongs to a set of unique identifiers IG =
{G |G ∈ {R,B, P,O}}, where R denotes the red ghost
(Blinky), B denotes the blue ghost (Inky), P denotes the pink
ghost (Pinky), and O denotes the orange ghost (Sue). Although
an agent’s representation occupies several pixels on the screen,
its actual position is defined by a small 8 (pixel) × 8 (pixel)
game tile, and capture occurs when these positions overlap.
Letting τ [x] represent the tile containing the pixel at position
x = (x, y), capture occurs when

τ [xM (k)] = τ [xG(k)] , ∃G ∈ IG. (14)

Because ghosts’ behaviors include a pseudorandom com-
ponent, the optimal control law for Ms. Pac-Man cannot be
determined a priori, but must be updated based on real-time
observations of the game [51]. Like any human player, the Ms.
Pac-Man player developed in this paper is assumed to have
full visibility of the information displayed on the game screen.
Thus, a character state vector containing the positions of all
game characters and of the bonus item xF (k) at time k is
defined as

x(k) �
[
xT
M (k) xT

R(k) x
T
B(k) x

T
P (k) x

T
O(k) x

T
F (k)

]T
(15)

and can be assumed to be fully observable. Future game states
can be altered by the player via the game control vector uM (k).
While the player can decide the direction of motion (Fig. 3),
the speed of Ms. Pac-Man, αM (k), is determined by the game
based on the current game level, on the modes of the ghosts,
and on whether Ms. Pac-Man is collecting pills. Furthermore,
the speed is always bounded by a known constant ν, i.e.,
αM (k) ≤ ν.

The ghosts are found to obey one of three modes that are
represented by a discrete variable δG(k), namely pursuit mode
[δG(k) = 0], evasion mode [δG(k) = 1], and scatter mode
[δG(k) = −1]. The modes of all four ghosts are grouped into
a vector m(k) � [δR(k) δB(k) δP (k) δO(k)]

T that is used to
determine, among other things, the speed of Ms. Pac-Man.

The distribution of pills (fixed targets) in the maze is repre-
sented by a 28× 36 matrix D(k) defined over an 8 (pixel) ×
8 (pixel) grid used to discretize the game screen into tiles.
Then, the element in the ith row and jthe column at time k,
denoted by D(i,j)(k), represents the presence of a pill (+1),
power pill (−1), or an empty tile (0). Then, a function n :
R

28×36 → R, defined as the sum of the absolute values of all
elements of D(k), can be used to obtain the number of pills
(including power pills) that are present in the maze at time
k. For example, when Ms. Pac-Man is eating pills n[D(k)] <
n[D(k − 1)], and when it is traveling in an empty corridor,
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TABLE I
SPEED PARAMETERS FOR MS. PAC-MAN

n[D(k)] = n[D(k − 1)]. Using this function, the speed of Ms.
Pac-Man can be modeled as follows:

αM (k) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
β1ν, if m(k) �� 1 and n [D(k)] < n [D(k − 1)]

β2ν, if m(k) �� 1 and n [D(k)] = n [D(k − 1)]

β3ν, if m(k) � 1 and n [D(k)] < n [D(k − 1)]

β4ν, if m(k) � 1 and n [D(k)] = n [D(k − 1)]

(16)

where β1, β2, β3, and β4 are known parameters that vary with
the game level, as shown in Table I.

All elements of the matrix D(k) and vector m(k) are rear-
ranged into a vector z(k) that represents the game conditions,
and is obtained in real time from the screen (Section VII). As
a result, the state of the game s(k) = [xT (k) zT (k)]T is fully
observable. Furthermore, s(k) determines the behaviors of the
ghosts as explained in Section V.

V. MODELS OF ADVERSARY BEHAVIOR

The Ms. Pac-Man character is faced by a team of antago-
nistic adversaries, four ghosts, that try to capture Ms. Pac-Man
and cause it to lose a life when successful. Because the game
terminates after Ms. Pac-Man loses all lives, being captured by
the ghosts prevents the player from increasing its game score.
Evading the ghosts is, therefore, a key objective in the game of
Ms. Pac-Man. The dynamics of each ghost, ascertained through
experimentation and online resources [47], are modeled by a
linear differential equation in the form:

xG(k) = xG(k − 1) + αG(k − 1)uG(k − 1)δt (17)

where the ghost speed αG and control input uG depend on the
ghost personality (G) and mode, as explained in Sections V-A–
V-C. The pursuit mode is the most common and represents the
behavior of the ghosts while actively attempting to capture Ms.
Pac-Man. When in pursuit mode, each ghost uses a different
control law. When Ms. Pac-Man eats a power pill, the ghosts
enter evasion mode and move slowly and randomly about the
maze. The scatter mode only occurs during the first seven sec-
onds of each level and at the start of gameplay following the
death of Ms. Pac-Man. In scatter mode, the ghosts exhibit the
same random motion as in evasion mode, but move at “normal”
speeds.

A. Ghost Speed

The speeds of the ghosts depend on their personality, mode,
and position. In particular, the speed of Inky, Pinky, and Sue

TABLE II
SPEED PARAMETERS FOR BLUE, PINK, AND ORANGE GHOSTS

TABLE III
SPEED PARAMETERS FOR RED GHOST

can be modeled in terms of the maximum speed of Ms. Pac-
Man (ν), and in terms of the ghost mode and speed parameters
(Table II) as follows:

αG(k) =

⎧⎪⎨
⎪⎩
η1ν, if δG(k) = 1

η2ν, if δG(k) �= 1 and τ [xG(k)] /∈ T
η3ν, if δG(k) �= 1 and τ [xG(k)] ∈ T

(18)

where G = B,P,O. The parameter η1 (Table II) scales the
speed of a ghost in evasion mode. When ghosts are in scatter
or pursuit mode, their speed is scaled by parameter η2 or η3,
depending on whether they are outside or inside a tunnel T ,
respectively. The ghost speeds decrease significantly when they
are located in T , accordingly, η2 > η3, as shown in Table II.

Unlike the other three ghosts, Blinky has a speed that
depends on the number of pills in the maze n[D(k)]. When
the value of n(·) is below a threshold d1, the speed of the
red ghost increases according to parameter η4, as shown in
Table III. When the number of pills decreases further, below
n[D(k)] < d2, Blinky’s speed is scaled by a parameter η5 ≥ η4
(Table III). The relationship between the game level, the speed
scaling constants, and the number of pills in the maze is pro-
vided in lookup table form in Table III. Thus, Blinky’s speed
can be modeled as

αG(k) =

{
η4ν, if n[D(k)]| ≤ d1

η5ν, if n[D(k)] ≤ d2
, for G = R (19)

and Blinky is often referred to as the aggressive ghost.

B. Ghost Policy in Pursuit Mode

Each ghost utilizes a different strategy for chasing Ms. Pac-
Man, based on its own definition of a target position denoted
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by yG(k) ∈ W . In particular, the ghost control law greedily
selects the control input that minimizes the Manhattan distance
between the ghost and its target from a set of admissible con-
trol inputs, or action space, denoted by UG(k). The ghost action
space depends on the position of the ghost at time k, as well
as the geometries of the maze walls, and is defined similarly
to the action space of Ms. Pac-Man in (8). Thus, based on the
distance between the ghost position xG(k) and the target posi-
tion yG(k), every ghost implements the following control law
to reach yG(k):

uG(k) =

⎧⎨
⎩

c if c ∈ UG(k)
d if c /∈ UG(k),d ∈ UG(k)
[0 1]T if c /∈ UG(k),d /∈ UG(k)

(20)

where

c � H(C) ◦ sgn[ξG(k)] (21)

d � H(D) ◦ sgn[ξG(k)] (22)

C �
[
1 −1
−1 1

]
|ξG(k)| (23)

D �
[
−1 1
1 −1

]
|ξG(k)| (24)

ξG(k) � [xG(k)− yG(k)] . (25)

Symbol ◦ denotes the Schur product, H(·) is the elementwise
Heaviside step function defined such that H(0) = 1, sgn(·)
is the elementwise signum or sign function, and | · | is the
elementwise absolute value.

In pursuit mode, the target position for Blinky, the red ghost
(R), is the position of Ms. Pac-Man [47]

yR(k) = xM (k) (26)

as shown in Fig. 4. As a result, the red ghost is most often seen
following the path of Ms. Pac-Man. The orange ghost (O), Sue,
is commonly referred to as the shy ghost, because it typically
tries to maintain a moderate distance from Ms. Pac-Man. As
shown in Fig. 5, when Ms. Pac-Man is within a threshold dis-
tance cO of Sue, the ghost moves toward the lower left corner
of the maze, with coordinates (x, y) = (0, 0). However, if Ms.
Pac-Man is farther than cO from Sue, Sue’s target becomes the
position of Ms. Pac-Man, i.e., [47]

yO(k) =

{
[0 0]

T
, if ‖xO(k)− xM (k)‖2 ≤ cO

xM (k), if ‖xO(k)− xM (k)‖2 > cO
(27)

where cO = 64 pixels, and ‖ · ‖2 denotes the L2-norm.
Unlike Blinky and Sue, the pink ghost (P ), Pinky, selects its

target yP based on both the position and the direction of motion
of Ms. Pac-Man. In most instances, Pinky targets a position in
W that is at a distance cP from Ms. Pac-Man, and in the direc-
tion of Ms. Pac-Man’s motion, as indicated by the value of the
control input uM (Fig. 6). However, when Ms. Pac-Man is mov-
ing in the positive y-direction (i.e., uM (k) = a1), Pinky’s target
is cP pixels above and to the left of Ms. Pac-Man. Therefore,
Pinky’s target can be modeled as follows [47]:

yP (k) = xM (k) +G[uM (k)]cP (28)

Fig. 4. Example of Blinky’s target, yR.

where cP= [32 32]T pixels, and G(·) is a matrix function of
the control, defined as

G(a1) =

[
−1 0
0 1

]
G(a2) =

[
−1 0
0 0

]
(29)

G(a3) =

[
0 0
0 −1

]
G(a4) =

[
1 0
0 0

]
.

The blue ghost (B), Inky, selects its target yB based not only
on the position and direction of motion of Ms. Pac-Man, but
also on the position of the red ghost xR. As illustrated in Fig. 7,
Inky’s target is found by projecting the position of the red
ghost in the direction of motion of Ms. Pac-Man (uM ), about a
point 16 pixels from xM , and in the direction uM . When Ms.
Pac-Man is moving in the positive y-direction (uM (k) = a1),
however, the point for the projection is above and to the left of
Ms. Pac-Man at a distance of 6 pixels. The reflection point can
be defined as

yR
M (k) = xM (k) +G[uM (k)]cB (30)

where cB= [16 16]T , and the matrix function G(·) is defined
as in (29). The position of the red ghost is then projected about
the reflection point yR

M in order to determine the target for the
blue ghost [47]

yB(k) = 2 · yR
M (k)− xR(k) (31)

as shown by the examples in Fig. 7.

C. Ghost Policy in Evasion and Scatter Modes

At the beginning of each level and following the death of Ms.
Pac-Man, the ghosts are in scatter mode for seven seconds. In
this mode, the ghosts do not pursue the player but, rather, move
about the maze randomly. When a ghost reaches an intersec-
tion, it is modeled to select one of its admissible control inputs
UG(k) with uniform probability (excluding the possibility of
reversing direction).

If Ms. Pac-Man eats a power pill, the ghosts immediately
reverse direction and enter the evasion mode for a period of time
that decreases with the game level. In evasion mode, the ghosts
move randomly about the maze as in scatter mode but with a
lower speed. When a ghost in evasion mode is captured by Ms.
Pac-Man, it returns to the ghost pen and enters pursuit mode on
exit. Ghosts that are not captured return to pursuit mode when
the power pill becomes inactive.
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Fig. 5. Examples of Sue’s target, yO . (a) ‖xO(k)− xM (k)‖2 ≤ cO . (b) ‖xO(k)− xM (k)‖2 > cO .

Fig. 6. Examples of Pinky’s target, yP . (a) If uM (k) = a1. (b) If uM (k) = a2. (c) If uM (k) = a3. (d) If uM (k) = a4.

Fig. 7. Examples of Inky’s target, yB . (a) If uM (k) = a1.
(b) If uM (k) = a3.

VI. METHODOLOGY

This paper presents a methodology for optimizing the deci-
sion strategy of a computer player, referred to as the artificial
Ms. Pac-Man player. A decision-tree representation of the
game is obtained by using a computational geometry approach
known as cell decomposition to decompose the obstacle-free
workspace Wfree into convex subsets, or cells, within which
a path for Ms. Pac-Man can be easily generated [40]. As
explained in Section VI-A, the cell decomposition is used
to create a connectivity tree representing causal relationships
between Ms. Pac-Man’s position, and possible future paths
[52]. The connectivity tree can then be transformed into a deci-
sion tree with utility nodes obtained from the utility function

defined in Section VI-B. The optimal strategy for the artificial
player is then computed and updated using the decision tree, as
explained in Section VI-C.

A. Cell Decomposition and the Connectivity Tree

As a preliminary step, the corridors of the maze are decom-
posed into nonoverlapping rectangular cells by means of a line
sweeping algorithm [53]. A cell, denoted by κi, is defined as
a closed and bounded subset of the obstacle-free space. The
cell decomposition is such that a maze tunnel constitutes a sin-
gle cell, as shown in Fig. 8. In the decomposition, two cells κi

and κj are considered to be adjacent if and only if they share
a mutual edge. The adjacency relationships of all cells in the
workspace can be represented by a connectivity graph. A con-
nectivity graph G is a nondirected graph, in which every node
represents a cell in the decomposition of Wfree, and two nodes
κi and κj are connected by an arc (κi, κj) if and only if the
corresponding cells are adjacent.

Ms. Pac-Man can only move between adjacent cells, there-
fore, a causal relationship can be established from the adjacency
relationships in the connectivity graph, and represented by a
connectivity tree, as was first proposed in [52]. Let κ[x] denote
the cell containing a point x = [x y]T ∈ Wfree. Given an ini-
tial position x0, and a corresponding cell κ[x0], the connectivity
tree associated with G, and denoted by C, is defined as an
acyclic tree graph with root κ[x0], in which every pair of nodes
κi and κj connected by an arc are also connected by an arc
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Fig. 8. Cell decomposition of Ms. Pac-Man second maze.

in G. As in the connectivity graph, the nodes of a connectivity
tree represent void cells in the decomposition. Given the posi-
tion of Ms. Pac-Man at any time k, a connectivity tree with root
κ[xM (k)] can be readily determined from G, using the method-
ology in [52]. Each branch of the tree then represents a unique
sequence of cells that may be visited by Ms. Pac-Man, starting
from xM (k).

B. Ms. Pac-Man’s Profit Function

Based on the game objectives described in Section II, the
instantaneous profit of a decision uM (k) is defined as a
weighted sum of the risk of being captured by the ghosts,
denoted by R, and the reward gained by reaching one of tar-
gets, denoted by V . Let d(·), p(·), f(·), and b(·) denote the
rewards associated with reaching the pills, power pills, ghosts,
and bonus items, respectively. The corresponding weights, ωd,
ωp, ωf , and ωb denote known constants that are chosen heuristi-
cally by the user, or computed via a learning algorithm, such as
temporal difference [39]. Then, the total reward can be defined
as the sum of the rewards from each target type

V [s(k),uM (k)] = ωdd[s(k),uM (k)] + ωpp[s(k),uM (k)]

+ ωff [s(k),uM (k)] + ωbb[s(k),uM (k)]
(32)

and can be computed using the models presented in Section V,
as follows.

The pill reward function d(·) is a binary function that rep-
resents a positive reward of 1 unit if Ms. Pac-Man is expected
to eat a pill as result of the chosen control input uM , and is
otherwise zero, i.e.,

d[x(k),uM (k), z(k)] =

{
0, if D[xM (k)] �= 1
1, if D[xM (k)] = 1.

(33)

A common strategy implemented by both human and artifi-
cial players is to use power pills to ambush the ghosts. When

utilizing this strategy, a player waits near a power pill until
the ghosts are near, it then eats the pill and pursues the ghosts
which have entered evasion mode. The reward associated with
each power pill can be modeled as a function of the minimum
distance between Ms. Pac-Man and each ghost G

ρG[xM (k)] � min |xM (k)− xG(k)| (34)

where | · | denotes the L1-norm. In order to take into account
the presence of the obstacles (walls), the minimum distance
in (34) is computed from the connectivity tree C obtained in
Section VI-A, using the A ∗ algorithm [53]. Then, letting ρD
denote the maximum distance at which Ms. Pac-Man should
eat a power pill, the power-pill reward can be written as

p[x(k),uM (k), z(k)] =

{
0, if D[xM (k)] �= −1∑
G∈IG

g[x(k)], if D[xM (k)] = −1

(35)

where

g[xM (k),xG(k)] = ϑ− ×H{ρG[xM (k)]− ρD}
+ ϑ+ ×H{ρD − ρG[xM (k)]}. (36)

The parameters ϑ− and ϑ+ are the weights that represent the
desired tradeoff between the penalty and reward associated with
the power pill.

Because the set of admissible decisions for a ghost is a
function of its position in the maze, the probability that a
ghost in evasion mode will transition to a state xG(k) from
a state xG(k − 1), denoted by P [xG(k) |xG(k − 1)], can be
computed from the cell decomposition (Fig. 8). Then, the
instantaneous reward for reaching (eating) a ghost G in evasion
mode is

f [x(k),uM (k), z(k)] (37)

=

{
0, if xG(k) �= xM (k)H[δG(k)−1]
P [xG(k)|xG(k−1)]ζ(k), if xG(k) = xM (k)

where δG(k) represents the mode of motion for ghost G
(Section IV), and the function

ζ(k) =

{
5−

∑
G∈IG

H[δG(k)− 1]

}2

(38)

is used to increase the reward quadratically with the number of
ghosts reached.

Like the ghosts, the bonus items are moving targets that,
when eaten, increase the game score. Unlike the ghosts, how-
ever, they never pursue Ms. Pac-Man, and, if uneaten after a
given period of time they simply leave the maze. Therefore, at
any time during the game, an attractive potential function

Ub(x) =

{
ρ2F (x), if ρF (x) ≤ ρb
0, if ρF (x) > ρb

, x ∈ Wfree (39)

can be used to pull Ms. Pac-Man toward the bonus item with a
virtual force

Fb(x) = −∇Ub(x) (40)
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that decreases with ρF . The distance ρF is defined by substitut-
ing G with F in (34), ρb is a positive constant that represents
the influence distance of the bonus item [53], and ∇ is the gra-
dient operator. The instantaneous reward function for the bonus
item is then defined such that the player is rewarded for moving
toward the bonus item, i.e.,

b [x(k),uM (k), z(k)] = sgn {Fb [xM (k)]} ◦ uM (k). (41)

The weight ωb in (32) is then chosen based on the type and
value of the bonus item for the given game level.

The instantaneous risk function is defined as the sum of the
immediate risk posed by each of the four ghosts

R [x(k),uM (k), z(k)] =
∑
G∈IG

RG [x(k),uM (k), z(k)] (42)

where the risk of each ghost RG depends on its mode of motion.
In evasion mode (δG = 1), a ghost G poses no risk to Ms. Pac-
Man, because it cannot capture her. In scatter mode (δG = 0),
the risk associated with a ghost G is modeled using a repulsive
potential function

UG(x) =

{(
1

ρG(x) −
1
ρ0

)2

, if ρG(x) ≤ ρ0

0, if ρG(x) > ρ0
, x ∈ Wfree

(43)

that repels Ms. Pac-Man with a force

FG(x) = −∇UG(x) (44)

ρ0 is the influence distance of Ms. Pac-Man, such that when Ms.
Pac-Man is farther than ρ0 from a ghost, the ghost poses zero
risk. When a ghost is in the ghost pen or otherwise inactive, its
distance to Ms. Pac-Man is treated as infinite.

The risk of a ghost in scatter mode is modeled such that Ms.
Pac-Man is penalized for moving toward the ghost, i.e.,

RG [x(k),uM (k), z(k)] = sgn {FG[xM (k)]} ◦ uM (k) (45)

for δG(k) = −1. In pursuit mode [δG(k) = 0], the ghosts are
more aggressive and, thus, the instantaneous risk is modeled as
the repulsive potential

RG [x(k),uM (k), z(k)] = UG(x). (46)

Finally, the risk of being captured by a ghost is equal to a
large positive constant χ defined by the user

RG [x(k),uM (k), z(k)] = χ, for τ [xM (k)] = τ [xG(k)].
(47)

This emphasizes the risk of losing a life, which would cause
the game to end sooner and the score to be significantly lower.
Then the instantaneous profit function is a sum of the reward V
and risk R

J [uM (k)] = V [s(k),uM (k)] +R[x(k),uM (k), z(k)] (48)

which is evaluated at each node in a decision tree constructed
using the cell decomposition method described above.

C. Decision Tree and Optimal Strategy

As was first shown in [52], the connectivity tree G obtained
via cell decomposition in Section VI-A can be transformed into
a decision tree Ti that also includes action and utility nodes.
A decision tree is a directed acyclic graph with a tree-like
structure in which the root is the initial state, decision nodes
represent all possible decisions, and state (or chance) nodes
represent the state values resulting from each possible decision
[54]–[56]. Each branch in the tree represents the outcomes of a
possible strategy σi and terminates in leaf (or utility) node that
contains the value of the strategy’s cumulative profit Ji,f .

Let the tuple Ti = {C,D, J,A} represent a decision tree
comprising a set of chance nodes C, a set of decision nodes
D, the utility function J , and a set of directed arcs A. At any
time ti ∈ (t0, tF ], a decision tree Ti for Ms. Pac-Man can be
obtained from G using the following assignments.

1) The root is the cell κi ∈ G occupied by Ms. Pac-Man at
time ti.

2) Every chance node κj ∈ C represents a cell in G.
3) For every cell κj ∈ C, a directed arc (κj , κl) ∈ A is

added iff ∃(κj , κl) ∈ G, j �= l. Then, (κj , κl) represents
the action decision to move from κj to κl.

4) The utility node at the end of each branch represents the
cumulative profit Ji,f of the corresponding strategy, σi,
defined in (4).

Using the above assignments, the instantaneous profit can be
computed for each node as the branches of the tree are grown
using Ms. Pac-Man’s profit function, presented in Section VI-B.
When the slice corresponding to tf is reached, the cumulative
profit Ji,f of each branch is found and assigned to its utility
node. Because the state of the game can change suddenly as
result of random ghost behavior, an exponential discount factor
is used to discount future profits in Ji,f , and favor the profit
that may be earned in the near future. From Ti, the optimal
strategy σ∗

i is determined by choosing the action corresponding
to the branch with the highest value of Ji,f . As explained in
Section III, a new decision tree is generated when tf is reached,
or when the state observations differ from the model prediction,
whichever occurs first.

VII. SIMULATION RESULTS

The simulation results presented in this paper are obtained
from the Microsoft’s Revenge of the Arcade software, which is
identical to the original arcade version of Ms. Pac-Man. The
results in Section VII-A validate the ghost models presented in
Section V, and the simulations in Section VII-B demonstrate
the effectiveness of the model-based artificial player presented
in Section VI. Every game simulated in this section is played
from beginning to end. The artificial player is coded in C#,
and runs in real time on a laptop with a Core-2 Duo 2.13-GHz
CPU, and 8-GB RAM. At every instant, indexed by k, the state
of the game s(k) is extracted from screen-capture images of
the game using the algorithm presented in [41]. Based on the
observed state value s(k), the control input to Ms. Pac-Man uM

is computed from the decision tree Ti, and implemented using
simulated keystrokes. Based on s(k), the tree Ti is updated at
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Fig. 9. Example of simulated and observed trajectories for the red ghost in pursuit mode.

Fig. 10. Example of ghost-state error histories, and model updates (diamonds).

selected instants ti ∈ (t0, tf ], as explained in Section VI-C. The
highest recorded time to compute a decision was 0.09 s, and the
mean times for the two most expensive steps of extracting the
game state and computing the decision tree are on the order of
0.015 and 0.05 s, respectively.

A. Adversary Model Validation

The models of the ghosts in pursuit mode, presented in
Section V-B, are validated by comparing the trajectories of the
ghosts extracted from the screen capture code to those gen-
erated by integrating the models numerically using the same
initial game conditions. When the ghosts are in other modes,
their random decisions are assumed to be uniformly distributed
[47]. The ghosts’ state histories are extracted from screen-
capture images while the game is being played by a human
player. Subsequently, the ghost models are integrated using the
trajectory of Ms. Pac-Man extracted during the same time inter-
val. Fig. 9 shows an illustrative example of actual (solid line)
and simulated (dashed line) trajectories for the red ghost, in
which the model generated a path identical to that observed
from the game. The small error between the two trajectories,
in this case, is due entirely to the screen-capture algorithm.

The ghosts’ models are validated by computing the percent-
age of ghost states that are predicted correctly during simulated
games. Because the ghosts only make decisions at maze inter-
sections, the error in a ghost’s state is computed every time the
ghost is at a distance of 10 pixels from an intersection. Then,
the state is considered to be predicted correctly if the error
between the observed and predicted values of the state is less
than 8 pixels. If the error is larger than 8 pixels, the predic-
tion is considered to be incorrect. When an incorrect prediction

TABLE IV
GHOST MODEL VALIDATION RESULTS

occurs, the simulated ghost state xG is updated online using the
observed state value as an initial condition in the ghost dynamic
equation (17). Fig. 10 shows the error between simulated and
observed state histories for all four ghosts during a sample time
interval.

The errors in ghost model predictions were computed by
conducting game simulations until approximately 20 000 deci-
sions were obtained for each ghost. The results obtained from
these simulations are summarized in Table IV. In total, 79 705
ghost decisions were obtained, for an average model accuracy
(the ratio of successes to total trials) of 96.4%. As shown in
Table IV, the red ghost model is the least prone to errors, fol-
lowed by the pink ghost model, the blue ghost model, and, last,
the orange ghost model, which has the highest error rate. The
model errors are due to imprecisions when decoding the game
state from the observed game image, computation delay, miss-
ing state information (e.g., when ghost images overlap on the
screen), and imperfect timing by the player when making turns,
which has a small effect on Ms. Pac-Man’s speed, as explained
in Section II.
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Fig. 11. Time histories of game scores obtained by human and AI players.

Fig. 12. Player score distribution for 100 games.

The difference in the accuracy of different ghost models
arises from the fact that the differential equations in (26)–(28)
and (31) include different state variables and game parameters.
For example, the pink ghost model has a higher error rate than
the red ghost model because its target position yP is a func-
tion of Ms. Pac-Man state and control input, and these variables
are both susceptible to observation errors, while the red ghost
model only depends on Ms. Pac-Man state. Thus, the pink ghost
model is subject not only to observation errors in xM , which
cause errors in the red ghost model, but also to observation
errors in uM .

B. Game Strategy Performance

The artificial player strategies are computed using the
approach described in Section VI, where the weighting coeffi-
cients are ωV = 1, ωR = 0.4, ωd = 8, ωp = 3, ωf = 15, ωb =
0.5, χ = 20 000, ϑ− = −2.2, and ϑ+ = 1, and are chosen
by the user based on the desired tradeoff between the multi-
ple conflicting objectives of Ms. Pac-Man [50]. The distance
parameters are ρ0 = 150 pixels and ρb = 129 pixels, and are
chosen by the user based on the desired distance of influence
for ghost avoidance and bonus item, respectively [53]. The time
histories of the scores during 100 games are plotted in Fig. 11,
and the score distributions are shown in Fig. 12. The minimum,
average, and maximum scores are summarized in Table V.

TABLE V
PERFORMANCE RESULT SUMMARY OF AI AND HUMAN PLAYERS

From these results, it can be seen that the model-based arti-
ficial (AI) player presented in this paper outperforms most of
the computer players presented in the literature [8]–[14], which
display average scores between 9000 and 18 000 and maximum
scores between 20 000 and 36 280, where the highest score of
36 280 was achieved by the winner of the last Ms. Pac-Man
screen competition at the 2011 Conference on Computational
Intelligence and Games [14].

Because expert human players routinely outperform com-
puter players and easily achieve scores over 65 000, the AI
player presented in this paper is also compared to human play-
ers of varying skill levels. The beginner player is someone
who has never played the game before, the intermediate player
has basic knowledge of the game and some prior experience,
and the advanced player has detailed knowledge of the game
mechanics, and has previously played many games. All players



164 IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, VOL. 9, NO. 2, JUNE 2017

completed the 100 games over the course of a few weeks, dur-
ing multiple sittings, and over time displayed the performance
plotted in Fig. 11. From Table V, it can be seen that the AI
player presented in this paper performs significantly better than
both the beginner and intermediate players on average, with
its highest score being 43 720. However, the advanced player
outperforms the AI player on average, and has a much higher
maximum score of 65 200.

It can also be seen in Fig. 11 that the beginner and intermedi-
ate players improve their scores over time, while the advanced
player does not improve significantly. In particular, when a sim-
ple least squares linear regression was performed on these game
scores, the slope values were found to be 10.23 (advanced), 2.01
(AI), 74.32 (intermediate), and 36.67 (beginner). Furthermore,
a linear regression t-test aimed at determining whether the
slope of the regression line differs significantly from zero with
95% confidence was applied to the data in Fig. 11. The t-
test showed that while the intermediate and beginner scores
increase over time, the AI and advanced scores display a slope
that is not statistically significantly different from zero (see
[57] for a description of these methods). This analysis suggests
that beginner and intermediate players improve their perfor-
mance more significantly by learning from the game, while
the advanced player may have already reached its maximum
performance level.

From detailed game data (not shown for brevity), it was
found that human players are able to learn (or memorize) the
first few levels of the game, and initially make fewer errors
than the AI player. On the other hand, the AI player displays
better performance than the human players later in the game,
during high game levels when the game characters move faster,
and the mazes become harder to navigate. These conditions
force players to react and make decisions more quickly, and
are found to be significantly more difficult by human players.
Because the AI player can update its decision tree and strategy
very frequently, the effects of game speed on the AI player’s
performance are much smaller than on human players. Finally,
although the model-based approach presented in this paper does
not include learning, methods such as temporal difference [39]
will be introduced in future work to further improve the AI
player’s performance over time.

VIII. CONCLUSION

A model-based approach is presented for computing optimal
decision strategies in the pursuit-evasion game Ms. Pac-Man.
A model of the game and adversary dynamics are presented in
the form of a decision tree that is updated over time. The deci-
sion tree is derived by decomposing the game maze using a cell
decomposition approach, and by defining the profit of future
decisions based on adversary state predictions, and real-time
state observations. Then, the optimal strategy is computed from
the decision tree over a finite time horizon, and implemented
by an artificial (AI) player in real time, using a screen-capture
interface. Extensive game simulations are used to validate the
models of the ghosts presented in this paper, and to demon-
strate the effectiveness of the optimal game strategies obtained
from the decision trees. The AI player is shown to outperform

beginner and intermediate human players, and to achieve the
highest score of 43 720. It is also shown that although an
advanced player outperforms the AI player, the AI player is bet-
ter able to handle high game levels, in which the speed of the
characters and spatial complexity of the mazes become more
challenging.
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