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Abstract—This paper presents a new coverage formulation addressing the quality of service of sensor networks that cooperatively

detect targets traversing a region of interest. The problem of track coverage consists of finding the positions of n sensors such that a

Lebesgue measure on the set of tracks detected by at least k sensors is optimized. This paper studies the geometric properties of the

network, addressing a deterministic track coverage formulation and binary sensor models. It is shown that the tracks detected by a

network of heterogeneous omnidirectional sensors are the geometric transversals of nontranslates families of circles. A novel

methodology based on cone theory is presented for representing and measuring sets of transversals in closed form. Then, the solution

to the track coverage problem can be formulated as a nonlinear program (NLP). The numerical results show that this approach can

improve track coverage by up to two orders of magnitude compared to grid and random deployments. Also, it can be used to reduce

the number of sensors required to achieve a desired detection performance by up to 50 percent and to optimally replenish or reposition

existing sensor networks.

Index Terms—Coverage, sensor networks, target track, search theory, geometric transversals, optimization.

Ç

1 INTRODUCTION

THE study of sensor network deployment for coopera-
tively detecting moving targets in a region of interest

(ROI) has recently received considerable attention [1], [2],
[3]. Several authors have pointed out that a fundamental
problem is the placement of sensors to provide a desired
level of coverage, or quality of service, in the ROI, which in
this paper is assumed to be a bounded subset of a two-
dimensional euclidean space [4], [5], [6], [7]. The problem of
area coverage is concerned with subsets of two-dimensional
space that lie within the range of at least one sensor in the
network [8], [9]. Then, the area coverage of the network is
the union of the areas representing the sensors’ field of
views divided by the area of the ROI [10]. Depending on
the geometry of the sensor field of view, this quality of
service may be optimized by placing the sensors through
circle packing algorithms [11], [12] or by solving integer
linear programs that place directional sensors (sectors) to
cover multiple known targets [7]. In point coverage, a
sensing performance function is defined in terms of the
distance between the sensor and a point in two-dimen-
sional space and sensors are placed to provide uniform
performance over the ROI. Sensor placement for optimal
point coverage was performed using Voronoi diagrams in
[13]. Another well-known formulation is the art-gallery
problem, or line-of-sight visibility [14], [15]. This coverage

problem aims at placing sensors in an ROI with obstacles
such that a set of fixed targets is in the line of sight of at
least one sensor. The formulation most closely related to
that presented in this paper is grid coverage [4], in which
sensors are placed such that every point on a grid lies
within the detection range of at least k sensors.

The problem of track coverage pertains to the ability of a
sensor network to cooperatively detect targets traversing
the ROI. It is motivated by track-before-detect surveillance
systems that employ proximity sensors to establish the
presence of passive moving targets over a large ROI, with
no a priori knowledge of the target track [16]. In these
sensor networks, the objective is to detect target tracks. A
track is said to be detected if it can be formed from multiple
elementary detections that occur independently at various
times [17], [18], [19], [20]. In [17], an event-based algorithm
was developed to form the potential track of a target
moving in a straight line, based on multiple closest-point-
of-approach (CPA) detections obtained by a proximity
network. In [18], [19], [20], closed-form solutions for
probability of track detection were obtained using search
theory and Poisson approximations by assuming a uniform
distribution of sensors with constant range and by
modeling the moving target as a two-state Markov
processes. This paper focuses on the geometric properties
of these sensor networks, obtaining a measure of their
quality of service as a function of the sensors’ positions and
ranges. Consequently, the network performance can be
optimized by deciding how to place, reposition, or
replenish the sensors.

The track coverage problem presented in this paper is to
find the positions of n sensors such that a measure of the
tracks detected by at least k sensors in a rectangular ROI is
optimized. This paper assumes binary omnidirectional
sensor models [4], [10], [14] and straight target tracks [17],
[18], [19], [20]. The result is a new geometric transversal
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problem that requires a closed-form representation of the
lines intersecting nontranslates families of circles, also
known as stabbers [21]. In this paper, a new methodology
is presented for representing these stabbers by means of
cones that are finitely generated by pairs of unit vectors
(Section 4). Then, the quality of service of the network is
expressed by a coverage function obtained by assigning a
Lebesgue measure to the cones of stabbers (Section 5). In
Section 6, this function is used to derive the probability of
track detection and to formulate the track coverage
problem as a nonlinear program (NLP).

The track coverage problem is complementary to the
path exposure problem. Path exposure is the ability of a
sensor network to observe a target moving along a
specified path [22], [23]. In [24], a random sequential sensor
deployment scheme was developed using the worst and
best-case exposure of paths in an ROI. Although exposure-
based deployment schemes do not optimize sensor posi-
tions, they are very useful for addressing the detection of
active targets that may maneuver to avoid the sensors. On
the other hand, when targets are passive, sensors posi-
tioned by optimizing track coverage (through NLP) always
outperform those positioned by other deployment schemes
(Section 7). In Section 7.1, the NLP approach is shown to
improve track coverage by up to two orders of magnitude
compared to the sequential and grid deployment presented
in [4] and [24]. As shown in Section 7.2, the NLP approach
employs significantly smaller networks than path-exposure
deployment [24] (e.g., 50 percent fewer sensors) to achieve
a desired probability of track detection. In Sections 7.3 and
7.4, the NLP approach is used to improve the track
coverage of an existing network by up to 69.4 percent by
either replenishing or repositioning the sensors.

2 PROBLEM FORMULATION AND ASSUMPTIONS

The track coverage problem consists of placing a set of
omnidirectional sensors in an ROI such that a measure of
the set of tracks that are cooperatively detected is
maximized. The present formulation is in two-dimensional
euclidean space and relies on the following assumptions:

1. targets move along straight paths,
2. the ROI is a rectangle A,
3. the field of view of each sensor can be represented

by a circle centered at the sensor location, and
4. a sensor may detect a target only if the target track

intersects its field of view.

Suppose a network of n proximity sensors with different
ranges r1; . . . ; rn must be deployed in the ROI for the
purpose of detecting moving targets. Then, the number of
detections required per track is a constant parameter k such
that 1 � k � n and its value is decided based on the level of
confidence required by the sensor system [17]. For example,
Fig. 1 illustrates how two CPA detections may be used to
form four possible tracks (the two in the figure and their
reflections) in track-before-detect surveillance systems [17],
[18], [19], [20].

Therefore, in this paper, we address the following
problem:

Problem 2.1 (Track Coverage Optimization). Given a
parameter 1 � k � n and a network S of n omnidirectional
sensors with ranges RS ¼ fr1; . . . ; rng, find the sensor
positions XS ¼ fs1; . . . ; sng inside a rectangular ROI A such
that a measure of the set of tracks detected by at least k sensors
in S is maximized.

In order to optimize the sensors’ placement, the set of
tracks they intercept is expressed as a function of the
sensors’ coordinates in the plane s1; . . . ; sn. Under the given
assumptions, track coverage can be viewed as a new
geometric transversal problem. In this paper, a novel
approach is presented for representing geometric transver-
sals by means of cones.

3 BACKGROUND ON GEOMETRIC TRANSVERSALS

A set of geometric objects in IRd is said to have a
j-transversal when the objects are simultaneously inter-
sected by a j-dimensional flat or translate of a linear space.
A line transversal ðj ¼ 1Þ, also referred to as a stabber, with
d ¼ 2 and k � 1, is a straight line that intersects at least
k members of a family of objects. For example, line
transversals of a family of five square polygons, with
k ¼ 3, are shown in Fig. 2. Geometric transversal theory is
concerned with the analysis of the space of transversals to a
family of compact convex bodies in IRd [25]. While
considerable attention has been given to establishing the
necessary and sufficient conditions for the existence of
transversals, algorithms for finding j-transversals or for
constructing a space of transversals have been obtained in
only a few special cases [21]. It has been shown that the
problem of finding point transversals for families of half
spaces is a linear program [26]. The problem of finding
j-transversals to a family of n polytopes in IRd can be
formulated in terms of a system of linear matrix inequal-
ities. One of the first line transversal algorithms construct-
ing the stabbing region for a family of n line segments was
developed in [27] to address the practical visibility problem
in the plane. This algorithm has been extended to a family
of simple convex sets whose boundaries intersect pairwise
at most s times [28], thereby finding line transversals for
homothets of simple planar objects [29] or for circles of
equal radius [30].

One of the results that is relevant to the track coverage
problem is an algebraic decision tree methodology that
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Fig. 1. Geometry of interior and exterior tracks formed from two CPA

detections obtained by two omnidirectional sensors placed at s1 and s2

(adapted from [17], reflections are omitted for simplicity).



finds a single line transversal for a translates family of
n line segments in IR2 or n equal circles in IR2 [31].
Although existing algorithms (e.g., [31]) cannot construct
closed-form representations of line transversals, they could
be applied to determine the tracks intercepted by a family
of omnidirectional sensors with known positions. It was
pointed out in [21] that geometric transversal algorithms
could be greatly improved by considering the underlying
geometric nature of the problem. In this paper, the
geometric properties of circles and cones are used to
construct efficient closed-form representations of line
transversals. Then, a Lebesgue measure is assigned to the
space of line transversals to obtain a track coverage
function in terms of variable sensors’ positions (Section 5).

4 CONE REPRESENTATION OF TRACK COVERAGE

Based on the problem formulation in Section 2, the tracks
detected by k sensors in an omnidirectional network S of
size n can be viewed as the line transversals of a family of
circles with different radii. We show that a set of line
transversals can be represented by means of a coverage
cone, which contains line transversals (or tracks) character-
ized by the same intercept. The coverage cone of a single
sensor is defined in the following section. In Section 4.2, we
obtain the coverage cone of multiple sensors. Then, the
track coverage over a rectangular area is represented by the
union of coverage cones with intercepts along the perimeter
(Section 4.3). Finally, the coverage cone representation of
line transversals is used in Section 5 to obtain a track
coverage function that quantifies the ability of a sensor
network to perform cooperative detections.

4.1 Coverage Cone

Consider a sensor in the network S that is indexed by i and

is located at si ¼ ½xi yi�T 2 IR2 in the xy-plane. Let Cðsi; riÞ ¼
Ci denote a circle with radius ri centered at si that

represents the field of view of sensor i. Assume that any

target track can be described by a straight line, y ¼ ayxþ by,
with slope ay and y-intercept by. As shown in [17], a CPA

detection event takes place when the target path is

tangential to a circle of radius di � ri, centered at si.

Without loss of generality, we can assume that all circles

and CPA detections are in the positive orthant IR2
þ. Then,

we can represent tracks by rays or half lines denoted by

R�ðbyÞ. Each ray originates at an intercept y ¼ by and forms

an angle � ¼ tan�1ðayÞ with the x-axis. Let the vector y0 �
½0 by�T denote the position of the y-intercept. Then, the

position of the ith sensor can be expressed by a relative

position vector that is convenient for generating the sensor

coverage cone, namely,

vi � ðsi � y0Þ ¼
xi

ðyi � byÞ

� �
: ð1Þ

Borrowing two basic definitions from convex analysis [32], a

set K is said to be a cone if, for all x 2 K, where x 2 IR2 and

c > 0, we have cx 2 K. Also, given a nonempty subset X of

IRn, the cone generated by X is the set of all nonnegative

combinations of the elements of X, denoted by coneðXÞ. We

define the coverage cone of the ith sensor with respect to the

intercept by to be the cone generated by Ci with origin y0

and we denote it by KðCi; y0Þ. The coverage cone is a basic

construct for the coverage function because it represents the

set of tracks that can be detected by the ith sensor.

Remark 4.1. The coverage cone KðCi; y0Þ contains the set of

all tracks R�ðbyÞ that intersect the sensor field of view

Ciðsi; riÞ in IR2
þ.

The proof is provided in Appendix B and an example of a

coverage cone is illustrated in Fig. 3.
Let �i denote half the opening angle of the coverage cone

(Fig. 3). Since the extremals of K are tangential to Ci, the

trigonometric relationships

sin �i ¼
ri
kvik

¼ riffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
i þ ðyi � byÞ

2
q ð2Þ

and

cos �i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kvik2 � ðriÞ2

q
kvik

ð3Þ

relate the opening angle to the sensor location si through vi
in (1). Then, the coverage cone K � IR2 is finitely generated

by two unit vectors l̂i and ĥi, that is,

KðCi; y0Þ ¼ coneðl̂i; ĥiÞ ¼ fx j x ¼ c1 l̂i þ c2ĥi; c1; c2 � 0g;
ð4Þ
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Fig. 2. Examples of line transversals for a family of n ¼ 5 square

polygons and k ¼ 3 (taken from [21, p. 182]).

Fig. 3. Coverage cone KðCi; y0Þ of a sensor located at si, generated by

the unit vectors l̂i and ĥi.



provided the unit vectors are obtained from vi through
rotation matrices

ĥi ¼
cos�i
sin�i

� �
¼ Qþi v̂i �

cos �i � sin �i
sin �i cos �i

� �
vi
kvik

ð5Þ

and

l̂i ¼
cos �i
sin �i

� �
¼ Q�i v̂i �

cos �i sin �i
� sin �i cos �i

� �
vi
kvik

; ð6Þ

where Q�i ¼ ðQþi Þ
T . Thus, the coverage cone KðCi; y0Þ is

completely specified by the unit vectors l̂i and ĥi, which are
known functions of si and ri.

4.2 k-Coverage Cone for Multiple Sensors

Multiple sensor detections typically are necessary to deter-
mine target tracks by means of proximity sensors or in the
presence of measurement errors and false alarms, as shown
in [17]. Let k denote the minimum number of distinct sensor
detections that are required by the system to reliably form a
track. Two detections are said to be distinct when they are
obtained by two different sensors. Thus, k detections are
obtained when k sensors in the network S ¼ fC1; . . . ; Cng
intersect the same track.

In this section, we show that the set of tracks that intersect
at least k sensors inS, with y-intercept by, is contained by a so-
called k-coverage cone. Vectors in IR2 are ordered according
to the orientation of the reference frame. Two vectors ui and
uj are said to be ordered according to the xy-frame such that
ui � uj if, when these vectors are translated to make their
origins coincide and ui is rotated through the smallest angle
possible to meetuj, this rotation is in the same direction as the
orientation of thexy-frame (as illustrated in Fig. 4 and in [33]).
Let �ðS; y0Þ and �ðS; y0Þ denote the sets of unit vectors
generating the coverage cones of all sensors in S with
origin y0. That is, from (5) and (6), �ðS; y0Þ ¼ fĥijQ�i ĥi ¼
v̂i;8i 2 ISg and �ðS; y0Þ ¼ fl̂ijQþi l̂i ¼ v̂i;8i 2 ISg, where IS
denotes the index set of S. Then, these two sets can be used
to determine the k-coverage cone of S, as shown by the
following result:

Proposition 4.2. The set of all tracks R�ðbyÞ that are line
transversals to a family of k nontranslates circles
fC1; . . . ; Ckg � Sk with index set ISk is contained by the
finitely generated cone

KkðSk; y0Þ ¼ coneðl̂	; ĥ	Þ; ð7Þ

where y0 ¼ ½0 by�T , ĥ	 ¼ ĥ|, and l̂	 ¼ l̂{ with |; { 2 ISk such

that ĥ| 
 ĥi 2 �ðSk; y0Þ and l̂{ � l̂i 2 �ðSk; y0Þ for 8i 2 ISk

and provided l̂{ � ĥ|. If l̂{ � ĥ|, then KkðSk; y0Þ ¼ ;. A proof

is provided in Appendix C.

A simple example of the k-coverage cone is illustrated in
Fig. 5, where k ¼ 2 and S2 contains two sensors located at s1

and s2. In this example, the 2-coverage cone K2ðS2; y0Þ is
generated by the unit vectors l̂	 ¼ l̂2 and ĥ	 ¼ ĥ1 since
�ðS2; y0Þ ¼ fĥ1; ĥ2g and �ðS2; y0Þ ¼ fl̂1; l̂2g, where l̂2 � l̂1
and ĥ1 � ĥ2.

The cone KkðSk; y0Þ is referred to as the k-coverage cone
of Sk with origin y0. An important feature of this approach
is that the k-coverage cone is easily obtained from the sets of
unit vectors � and �. Provided two unit vectors are in the
first or fourth quadrant of a reference frame, they can be
ordered by their direction sines (as shown in Appendix D).
Therefore, if we let

sin�	 ¼ inffsin�ijĥi ¼ ½cos�i sin�i�T 2 �ðSk; y0Þ; 8i 2 ISkg;
sin �	 ¼ supfsin �ijl̂i ¼ ½cos �i sin �i�T 2 �ðSk; y0Þ; 8i 2 ISkg;

ð8Þ

then l̂	 ¼ ½cos �	 sin �	�T and ĥ	 ¼ ½cos�	 sin�	�T . When the
unit vectors are in the second or third quadrant, they can
still be ordered by their direction sines by introducing a
constant rotation (Appendix D). Therefore, the infimum
and supremum in (8) can be determined by linear
operations on the elements of � and �, respectively.

Consider now the tracks detected by at least k sensors in
S ¼ fC1; . . . ; Cng, with 1 � k < n. These tracks are the line
transversals of any k-subset of S. A k-subset is defined as a
subset containing any k elements of a set with n elements
[34]. By Proposition 4.2, all tracks R�ðbyÞ detected by a set
of k sensors Sk are contained by the k-coverage cone of Sk. It
follows that the set of all tracks R�ðbyÞ detected by at least
k sensors in S is the union of the k-coverage cones of all
k-subsets of S:

KkðS; y0Þ ¼
[m
j¼1

KkðSjk; y0Þ; m ¼ n
k

� �
: ð9Þ
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Fig. 4. Example of three vectors ordered according to the xy-frame,

where ui � uj � uk.

Fig. 5. The k-coverage cone K2ðS2; y0Þ of the family S2 ¼ fC1; C2g is

shown in dark gray and is generated by the unit vectors l̂	 and ĥ	

obtained from the sets of unit vectors generating KðC1; y0Þ and

KðC2; y0Þ (shown in light gray).



Sjk denotes the jth k-subset of S and the number m of
possible k-subsets is given by the binomial coefficient n
choose k, as shown in (9). Since Kk is a union of possibly
disjoint cones, it may not be a cone [32]. Nevertheless, a
measure defined for a cone can be applied to Kk using the
principle of inclusion-exclusion, as shown in Section 5. In
the next section, the k-coverage cone is used to construct an
approximate representation of the set of tracks that traverse
the ROI A, and are detected by at least k sensors in S.

4.3 Track Coverage over a Rectangular Region of
Interest (ROI)

Let the ROI be a rectangle A of known dimensions L1  L2.
Place the xy-frame of reference along two sides ofA such that
its origin ð0; 0Þxy coincides with one vertex and one side ofA
can be denoted by the interval I y � fyjy 2 ½0 L2�g (Fig. 6).
The set of all tracks R�ðbyÞ that intersect this side of A at
by 2 I y and are detected by at least k sensors in S isKkðS; y0Þ
in (9). In order to obtain representations that are computa-
tionally tractable, I y is discretized intoN2 increments of size
�b ¼ L2=N2. Letting b‘y � ‘ � �b and y‘0 � ½0 b‘y�

T , the set of
tracks that intersect I y and are detected by at least k sensors
in S can be approximated by

KkðS; I yÞ �
[

‘¼0;...;N2

KkðS; y‘0Þ; N2 ¼ L2=�b; ð10Þ

where each set KkðS; y‘0Þ is given by (9). Clearly, by letting
�b! 0, the above approximation approaches the entire set
of tracks intersecting I y.

The methodology is extended to all sides of A by
placing a second frame of reference, x0y0, along the
remaining sides of A such that its origin ð0; 0Þx0y0 is the
vertex opposite to ð0; 0Þxy (Fig. 6). Then, each side of A is
denoted by one of the intervals I y, Ix � fxjx 2 ½0 L1�g,
Ix0 � fx0jx0 2 ½0 L1�g, or I y0 � fy0jy0 2 ½0 L2�g. With this
choice of reference frames, an efficient representation of the
target-tracks traversing A can be obtained by defining
coverage cones with origins on each of the four axes,
namely, x0 ¼ ½bx 0�T , y00 ¼ ½0 by0 �T , and x00 ¼ ½bx0 0�T ,

where bx 2 Ix, bx0 2 Ix0 , and by0 2 I y0 (Fig. 6). The coverage

cones of the ith sensor with respect to each axis are denoted

by KðCi; y0Þ, KðCi; x0Þ, KðCi; y00Þ, and KðCi; x00Þ and are

obtained by defining a relative-position vector for each axis.

From hereon, denote the vector in (1) by viðy0Þ and let

viðx0Þ ¼ ðsi � x0Þ denote the relative-position vector for x.

The relative-position vectors for the x0 and y0 axes are

defined as

viðx00Þ ¼ L� si � x00 and viðy00Þ ¼ L� si � y00; for 8i 2 IS;
ð11Þ

where L � ½L1 L2 �T . The coordinate transformation

sijx0y0 ¼ ðL� siÞ is used to express all sensor positions with

respect to the same coordinate frame xy. Then, the results in

Sections 4.1 through 4.2 can be extended to all axes.
For simplicity, all intervals I y, Ix, I y0 , and Ix0 are

discretized by increments of the same size �b. Hence, from

(10), the set of tracks traversing A and intersecting at least

k sensors in S is given by

KkðS;AÞ ¼ KkðS; I yÞ [ KkðS; IxÞ [ KkðS; Ix0 Þ [ KkðS; I y0 Þ

� [N2

‘¼0 [mj¼1 KkðSjk; y‘0Þ [KkðSjk; y0‘0 Þ
� �

[ [N1

‘¼0 [mj¼1 KkðSjk; x‘0Þ [KkðSjk; x0‘0 Þ
� �

;

ð12Þ

where m is equal to the binomial coefficient k choose n (as in

(9)), N2 ¼ L2=�b, and N1 ¼ L1=�b.

4.4 Example: Assessing the Track Coverage of a
Known Sensor Network Configuration with
n ¼ 20 and k ¼ 3

In this example, the cone representation of track coverage is

verified by considering a sensor network S, with n ¼ 20,

k ¼ 3, and the known ranges and positions in Fig. 7a. The

union of k-coverage cones KkðS; y‘0Þ, with y‘0 ¼ ½0 15�T , is

illustrated in Fig. 7a. The cone representation of track

coverage, KkðS;AÞ, is computed using the methodology in

Section 4.3 and plotted in parameter space in Fig. 7b, where

gray represents sets of tracks detected by at least k sensors.

When the sensors’ positions are known, a subset of tracks

that are cooperatively detected by S can be obtained

numerically by testing the intersections of a designated

sample of tracks TR with S, using the inequality

di ¼
ðby þ ayxi � yiÞffiffiffiffiffiffiffiffiffiffiffiffiffi

a2
y þ 1

q
							

							 � ri; ð13Þ

where ay ¼ tanð�Þ and ri, xi, and yi are the known range

and coordinates of sensor i. A proof and derivation are

provided in [35]. Let Bi denote a logical array or truth table

in which every element corresponds to one track in TR and

is either equal to 1 or 0, depending on whether the track has

been detected (1) or missed (0) by the ith sensor. Every

element of Bi can be evaluated using (13) and an array Bi

can be obtained for every sensor in S. Then, the logical

array
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Fig. 6. Reference frames used to define k-coverage cones with respect

to each axis, as illustrated in the figure for k ¼ 2 and S2 ¼ fC1; C2g.



Tk ¼
X
i2IS

Bi � k
( )

ð14Þ

indicates whether each track in TR has been detected by at

least k sensors in S. The array Tk is computed for the sensor

network in Fig. 7a and plotted in parameter space in Fig. 8b.

By comparing Fig. 7b to Fig. 8, it can be seen that KkðS;AÞ
provides an accurate representation of the tracks that are

cooperatively detected by S.

5 TRACK COVERAGE FUNCTION

The cone representation of track coverage allows us to

generate the space of tracks that are cooperatively detected

by a sensor network using sets of unit vectors. Another

important use of coverage cones is the functional repre-

sentation of the quality of service of the network. Assign a

Lebesgue measure � on ½0; �� to any set of rays K � IR2 such

that �f� : R� 2 Kg. Then, the opening angle of the cone K

is a measure on the set of rays contained by K. It follows

from Remark 4.1 that the opening angle of the coverage

cone KðCi; y0Þ is a measure on the set of tracks through y0

that are detected by the sensor Ci. Similarly, it follows from

Proposition 4.2 that the opening angle of the k-coverage

cone KkðSk; y0Þ is a measure on the set of tracks through y0

that are detected by all sensors in Sk.
Based on Section 4.2, it is always possible to generate the

k-coverage cone of a set Sk by means of two unit vectors l̂	

and ĥ	. This unit vector representation also allows us to

compute the opening angle of any coverage cone by means

of the cross product. Let  ¼  ðSk; y0Þ denote the opening

angle of the k-coverage cone KkðSk; y0Þ in (7), with origin

y0 ¼ ½0 by�T and by 2 I y. This cone is finitely generated by

two unit vectors, l̂	 ¼ l̂{ and ĥ	 ¼ ĥ|, that are defined in

terms of the relative-position vector (1). From the properties

of the cross product

sin ¼ kl̂	  ĥ	k: ð15Þ

Thus, using (5) and (6), the opening angle can be written

with respect to the sensors’ positions as
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Fig. 7. Track coverage KkðS;AÞ (b) of a known sensor network configuration (a) with n ¼ 20, k ¼ 3. The union KkðS; y‘0Þ is illustrated by the gray

cones in (a) for y‘0 ¼ ½0 15�T .

Fig. 8. (a) Number of detections obtained through testing and (b) resulting track coverage for the sensor network in Fig. 7a.



 ¼ H½detðM{|Þ� � sin�1½detðM{|Þ�; ð16Þ

where

M{| � l̂	T

ĥ	T

� �
¼ ðv̂{ÞTQþ{
ðv̂|ÞTQ�|

" #
; v̂i �

ðsi � y0Þ
kðsi � y0Þk

for i ¼ {; |:

ð17Þ

H½�� denotes the Heaviside function and detð�Þ denotes the

matrix determinant. From Proposition 4.2, { and | are the

indices of the unit vectors l̂{ and ĥ| with {; | 2 ISk such that

l̂{ � l̂i 2 �ðSk; y0Þ and ĥ| 
 ĥi 2 �ðSk; y0Þ for 8i 2 ISk (ob-

tained as shown in Appendix D). The Heaviside function in

(16) ensures that, if l̂{ � ĥ|, then  ¼ 0.
Consider now the case in which 1 � k � n. Since the set

in (9) is not always a cone, the Lebesgue measure � on

KkðS; y0Þ is obtained using the principle of inclusion-

exclusion [36], as shown by the following result:

Theorem 5.1. A measure on the set KkðS; y0Þ for a family of

nontranslates circles S ¼ fC1; . . . ; Cng � IR2
þ is given by

T ky0
ðXSÞ ¼

Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
 ðSi1k [ . . . [ Sijk ; y0Þ;

m ¼ n!

ðn� kÞ!k!
;

ð18Þ

where the summation
P

1�i1<...<ij�m is a sum over all the

½m!=ðm� jÞ! j!� distinct integer j-tuples ði1; . . . ; ijÞ satisfy-

ing 1 � i1 < . . . < ij � m. Silk denotes the ilth k-subset of S

and the union Si1k [ . . . [ Sijk is a p-subset of S, with

k � p � n.

A proof is provided in Appendix E. In the remainder of this

paper, the union Si1k [ . . . [ Sijk is abbreviated as S
i1;j
p .

As an example, consider a network S ¼ fC1; C2; C3g,
with k ¼ 2 and positions shown in Fig. 9. From (18), a

measure of the set of tracks detected by at least two sensors

in S is

T 2
y0
¼ ðS1

2 ; y0Þ þ  ðS2
2 ; y0Þ þ  ðS3

2 ; y0Þ
� ½ ðS1

2 [ S2
2 ; y0Þ þ  ðS1

2 [ S3
2 ; y0Þ

þ  ðS2
2 [ S3

2Þ; y0� þ  ðS1
2 [ S2

2 [ S3
2 ; y0Þ;

ð19Þ

where, from the definition of k-subset: S1
2 ¼ fC1; C2g,

S2
2 ¼ fC1; C3g, and S3

2 ¼ fC2; C3g. But, the union of two or

more k-subsets of S always produces a p-subset of S, with

k < p � n. In this case, S1
2 [ S2

2 ¼ fC1; C2; C3g ¼ S and

S1
2 [ S3

2 ¼ S2
2 [ S3

2 ¼ S1
2 [ S2

2 [ S3
2 ¼ fC1; C2; C3g ¼ S. There-

fore, (19) simplifies to

T 2
y0
¼  ðS1

2 ; y0Þ þ  ðS2
2 ; y0Þ þ  ðS3

2 ; y0Þ � 2 ðS; y0Þ; ð20Þ

as illustrated in Fig. 9.
T ky0

provides a measure of the set of tracks through y0

that are detected by at least k sensors in S as a function of

XS . It is evaluated by summing the opening angles of the

coverage cones of all p-subsets of S, with k � p � n. For a

p-subset Sp, the coverage cone KpðSp; y0Þ is generated by

two unit vectors, according to Proposition 4.2, and its

opening angle  ðSp; y0Þ is given by the cross product in (16).

The above result is used to derive a coverage function for A
(Section 5.1) which can be optimized with respect to XS , as

shown in Section 6.

5.1 ROI Track Coverage Function

The track coverage function for a rectangular ROI, A, is

obtained by considering the sets of tracks intersecting its

four sides, I y, Ix, I y0 , and Ix0 , and leading to at least

k detections by S. These sets can be represented by

coverage cones, as illustrated in Section 4.3. Consider the

set of tracks that intersect I y and are detected by at least

k sensors, KkðS; I yÞ, in (10). The sets in (10) are all disjoint

because they contain rays with different intercepts, thus

KkðS; y‘i0 Þ \ KkðS; y
‘j
0 Þ ¼ ; when ‘i 6¼ ‘j. Using the definition

of Lebesgue measure for disjoint sets [37], it follows that a

measure of the set KkðS; I yÞ, obtained from (10) and (18), is

T kIyðXSÞ ¼
XN2

‘¼0

T ky‘
0
ðXSÞ

¼
XN2

‘¼0

Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
 ðSi1;jp ; y‘0Þ; ð21Þ

where m, S
i1;j
p , and the j-tuples ði1; . . . ; ijÞ are all defined as

in Theorem 5.1.
The sets KkðS; I yÞ, KkðS; IxÞ, KkðS; Ix0 Þ, and KkðS; I y0 Þ in

(12) are not disjoint because a track intersecting one side of

A always intersects one other side of A. Let the opening

angles of the k-coverage cones KkðSk; x0Þ, KkðSk; y00Þ, and

KkðSk; x00Þ be denoted by 	ðSk; x0Þ, 
ðSk; y00Þ, and �ðSk; x00Þ,
respectively. Then, the measure � on KkðS;AÞ is
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Fig. 9. An example of coverage function, T 2
y0

, for three sensors S ¼
fC1; C2; C3g located at XS ¼ fs1; s2; s3g and k ¼ 2.



T kAðXSÞ ¼
1

2
½T kI yðXSÞ þ T kIxðXSÞ þ T kIx0 ðXSÞ þ T kIy0 ðXSÞ�

¼ 1

2

XN2

‘¼1

Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
½ ðSi1;jp ; y‘0Þ þ 
ðSi1;jp ; y0‘0 Þ�

þ 1

2

XN1�1

‘¼0

Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
½	ðSi1;jp ; x‘0Þ þ �ðSi1;jp ; x0‘0 Þ�;

ð22Þ

where each term [mj¼1KkðSk; �Þ in (12) has been written in
terms of opening angles using Theorem 5.1.

In the following sections, the track coverage function is
used to optimize the deployment of sensor networks
performing cooperative target detection. Also, the coverage
cones and their opening angles are used to derive an upper
bound for the track coverage function and the probability
of cooperative target detection of the network.

6 TRACK COVERAGE OPTIMIZATION AND

PROBABILITY OF TRACK DETECTION

The objective of the track coverage problem is to place a set
of sensors in an ROI such that their ability to cooperatively
detect moving targets is optimized. Using the track cover-
age function obtained in Section 5.1, Problem 2.1 can be
formulated as an NLP. As shown in [16], [17], [18], [19],
[20], in order to obtain multiple independent CPA detec-
tions, track-before-detect surveillance systems typically
require sensors to lie in A without overlapping. Then, the
set of optimal sensor positions X	S is given by the solution
fs	1; . . . ; s	ng of the following NLP:

maximize T kAðXSÞ; ð23Þ

subject to ðxi � xjÞ2 þ ðyi � yjÞ2 > ðri þ rjÞ2; 8i; j 2 IS;
ð24Þ

0 < xi < L1; 8i 2 IS; ð25Þ

0 < yi < L2; 8i 2 IS; ð26Þ

where s	i ¼ ½x	i y	i �
T and the objective function T kAðXSÞ is

given by (22). Also, the NLP (23)-(26) can be easily
modified to add sensors optimally to an existing network.
Suppose f sensors already exist in A and there is an
opportunity for replenishing the network with q addi-
tional sensors. The NLP (23)-(26) can be written for a
network S ¼ fC1; . . . ; Cf ; Cfþ1; . . . ; Cng with n ¼ q þ f sen-
sors, where now fs1; . . . ; sfg are known constants and
fsfþ1; . . . ; sng are the NLP variables. Then, its solution
fs	fþ1; . . . ; s	ng represents the set of sensor positions for
optimally replenishing the network.

It is shown in Appendix G that the track coverage
function (22) has an upper bound

T maxA ¼ L1 þ L2

�b

� �
� � T kAðXSÞ; for 8 XS; k; n; ð27Þ

that is independent of k and n. This upper bound
represents the track coverage provided by a sensor network

that detects all tracks through A at least k times, where A is
L1  L2. Therefore, it is referred to as total track coverage. In
large sensor networks, total track coverage may be
achieved by concentric configurations placed around the
perimeter of A. However, in many applications, the
available sensors are not sufficient to provide total track
coverage. Thus, T kA is maximized by determining the
optimal placement X	S from (23)-(26).

The coverage-cone representation of track coverage is
also used to derive the probability of detection of targets in
A as a function of XS . In applications where there is no
prior knowledge of target tracks, any ray R�ðbyÞ has the
same probability of representing an actual target track.
Then, the probability that a target traversing A along a
straight path is detected by at least k sensors in S is

Pk
AðXSÞ ¼

�b

4�L2

XN2

‘¼1

Xm
j¼1

ð�1Þjþ1

X
1�i1<...<ij�m

½ ðSi1;jp ; y‘0Þ þ 
ðSi1;jp ; y0‘0 Þ�

þ �b

4�L1

XN1�1

‘¼0

Xm
j¼1

ð�1Þjþ1

X
1�i1<...<ij�m

½	ðSi1;jp ; x‘0Þ þ �ðSi1;jp ; x0‘0 Þ�;

ð28Þ

where m, S
i1;j
p , and the j-tuples ði1; . . . ; ijÞ are defined as in

Theorem 5.1. A proof is provided in Appendix H. As in the
previous sections, the opening angles  , 
, 	, and � are
given by the functions in Appendix F and are computed for
every coverage cone of the p-subsets in (28), with k � p � n.
The derivation in Appendix H can be modified to account
for nonuniform probabilities of the tracks’ heading and
intercept, as will be shown in a separate paper.

7 RESULTS

A number of sensor deployment problems can be
formulated as an NLP optimizing the track coverage
function (22). Several algorithms are available for solving
NLPs numerically [38], [39]. In this research, two NLP
software packages [40], [41] were implemented and it was
found that the MATLAB Optimization Toolbox fmincon
function, based on Sequential Quadratic Programming
(SQP) [41], performs satisfactorily for the track coverage
optimization problems presented in this section. In every
simulation, the NLP solution, X	S , is determined by using
multiple random initializations to avoid local maxima.
Although up to 100 initializations are used, X	S is typically
determined after approximately 20 trials, when the opti-
mum track coverage ceases to improve. All trials were
found to converge to a local maxima without encountering
cycles [40] or other degenerate behaviors.

In Section 7.1, the NLP approach is shown to improve track
coverage by up to two orders of magnitude compared to
sequential and grid deployment [4], [24]. Also, a greedy
algorithm implementing the track coverage function (22) is
found to be considerably more effective than random or grid
deployment. In Section 7.2, the NLP solution is used to
deploy sensors until a desired probability of track detection,
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(28), is achieved, requiring significantly smaller networks
than path-exposure deployment [24]. Finally, in Sections 7.3
and 7.4, the NLP approach is used to improve the track
coverage of an existing network by either replenishing or
repositioning the sensors, respectively.

7.1 Track Coverage Optimization

The effectiveness of the NLP solution to the track coverage
optimization problem (Problem 2.1) is demonstrated for
the sensor networks in Table 1. The number of required
detections, k, is made to vary between 2 and 4 and A has
dimensions L1  L2 ¼ 150 100 km. Also, a fast and effec-
tive greedy algorithm implementing the track coverage
function, Algorithm 1, is obtained by modifying the circle-
packing algorithm presented in [11], which places circles in a
rectangle one at a time based on heuristic criteria and on their
maximum hole degree performance [11]. The heuristic
criteria are that the first circle is placed in the bottom-left
corner ofAand each subsequent circle must border two items
(one side of A or another circle) and avoid overlapping. It is
found that, by implementing the track coverage function (22)
in lieu of the maximum hole degree performance function
[11], the resulting deployment is considerably more effective
than grid and random deployments.

Algorithm 1: Pseudocode of greedy track coverage algo-

rithm
order n sensors in S according to decreasing radii;

place first sensor in bottom-left corner of A;

for i ¼ 2 to n do

generate all eligible positions for sensor Ci;

Require: Ci touches two items;

for (every eligible placement of Ci) do

calculate the coverage T kAðfs1; . . . ; si�1; sigÞ;
end for

select eligible placement si with maximum track
coverage;

end for

Table 2 compares the track coverage of sensors placed at
the NLP solution X	S , to the greedy Algorithm 1, and to
random and grid deployments. T kAðXSÞ is normalized by
T maxA to enable the comparison between different sensor
networks and parameters. These results show that sensors
placed at the NLP solution provide a track coverage up to
15 times higher (Table 2, n ¼ 15 and k ¼ 3) than grid and
random deployments, which have been previously pro-
posed for cooperative target detection [4], [24]. Sensor
networks deployed by the greedy algorithm display a track
coverage within 1.3 percent-22.7 percent of the optimal
T kAðX	SÞ (Table 2). Thus, Algorithm 1 may be used in lieu of
SQP when computation time is a concern. The NLP, greedy,
grid, and random deployments are plotted in Figs. 10 and
11, for n ¼ 40 and k ¼ 3. The greedy algorithm clusters
sensors providing near-optimal track coverage for net-
works with low area coverage, but otherwise causing track
coverage holes. The plot of track coverage in Fig. 12
illustrates that, in this example, the NLP and grid
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Sensor Networks Size and Range

TABLE 2
Normalized Track Coverage as a Function of Network Parameters and Deployment Strategy



deployments perform detections in similar regions of

parameter space, but the NLP deployment displays far

fewer coverage holes, leading to an 87.2 percent increase in

track coverage (Table 2).

7.2 Sensor Deployment for Achieving a Desired
Probability of Track Detection

A sequential deployment algorithm based on path expo-

sure was presented in [24] to achieve a desired probability

of track detection by using a minimal number of sensors. In

this section, we implement the sequential algorithm [24]

and show that the NLP approach can reduce the number of
sensors, n̂, required to achieve a desired probability of track
detection, P̂ k

A, by up to 50 percent. In the first example, all
sensors have range ri ¼ 5 km and P̂ 3

A ¼ 0:41. As shown in
Fig. 13a, the sequential algorithm from [24] requires a
minimal number of sensors n̂SEQ ¼ 40, whereas the NLP
solution requires only n̂NLP ¼ 30 sensors (Fig. 13b). In the
second example, the desired probability of track detection
is P̂ 3

A ¼ 0:18 and the size of the network is increased
according to the ranges in Table 1. In this case, the
sequential algorithm from [24] requires n̂SEQ ¼ 20 sensors,
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Fig. 10. Deployment of a sensor network with n ¼ 40 and k ¼ 3 obtained by (a) the NLP solution ð�Þ and by (b) the greedy algorithm (�).

Fig. 11. (a) Grid and (b) random deployments for a sensor network with n ¼ 40 and k ¼ 3.

Fig. 12. Track coverage KkðS;AÞ of a sensor network with n ¼ 40 and k ¼ 4, deployed by (a) NLP and (b) grid strategies.



whereas the NLP deployment achieves the desired prob-
ability of track detection with only n̂NLP ¼ 10 sensors (i.e.,
50 percent less than the sequential algorithm).

7.3 Optimal Replenishment of Sensor Networks

In this section, the NLP (23)-(26) is used to deploy a set of
sensors for the purpose of replenishing an existing network
that performs suboptimally. This situation may come about
when sensors have been initially misplaced or have moved
due to their environment [16], [19], [42]. It is assumed that
the positions of f existing sensors in A are known and their
track coverage must be improved by adding an additional
set of q sensors. As an example, consider the sensor
network shown by dots in Fig. 14a, with f ¼ 10, k ¼ 3, and
T 3
A=T maxA ¼ 0:033. When an additional q ¼ 10 sensors are

placed at the solution X	S of the NLP (23)-(26), shown by the
diamonds in Fig. 14a, the track coverage of the entire
network (with n ¼ q þ f) is improved by 715.2 percent. On
the other hand, if the same q sensors are added using a
sequential strategy (adapted from [24]), the track coverage
is only improved by 35.9 percent. In another example, the
existing sensor network is in a grid configuration, as shown
by the dots in Fig. 14b, and provides T 3

A=T maxA ¼ 0:039.
When an additional q ¼ 10 sensors are deployed by the
NLP algorithm (as shown by diamonds in Fig. 14b), the

track coverage is improved by 635.9 percent. If the same

sensors are added by sequential deployment [24], the track

coverage is only improved by 47.2 percent. Thus, by

replenishing a sensor network with the methodology

presented in this paper, its track coverage is improved

significantly compared to existing deployment schemes.

7.4 Optimal Repositioning of Sensor Networks

In applications where sensors are maneuverable [43], [44],

[45], an optimal deployment strategy can be obtained by

including the allowed repositioning region in the NLP

constraints. Without loss of generality, all sensors are

assumed to have the same repositioning capabilities and w

is used to denote half the width of a square region within

which each sensor can maneuver with the available power

(Fig. 15a). Then, the NLP (23)-(26) is modified by replacing

the constraints (25)-(26) with the following inequalities:

xi � w < xi < xi þ w; 8i 2 IS; ð29Þ

xi � w > 0; 8i 2 IS; ð30Þ

xi þ w < L1; 8i 2 IS; ð31Þ
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Fig. 13. (a) Sequential deployment of n̂SEQ ¼ 40 sensors and (b) optimal deployment of n̂NLP ¼ 30 sensors for achieving P̂ 3
A ¼ 0:41 when ri ¼ 5 km

for 8i.

Fig. 14. Optimal replenishment of an existing sensor network with f ¼ 10 sensors ð�Þ in (a) a random or (b) a grid configuration, k ¼ 3, and q ¼ 10

replenished sensors ð�Þ.



yi � w < yi < yi þ w; 8i 2 IS; ð32Þ

yi � w > 0; 8i 2 IS; ð33Þ

yi þ w < L2; 8i 2 IS: ð34Þ

The solution X	S of the resulting NLP constitutes the
new positions to be assumed by the maneuvering sensors
in order to improve the overall track coverage of the
sensor network. Consider the sensor network in Fig. 15a,
with suboptimal track coverage T 3

A=T maxA ¼ 0:44, n ¼ 40,
and w ¼ 24 km. When these sensors are repositioned at
X	S , shown by the diamonds in Fig. 15b, the track
coverage of the network is improved by 27.7 percent. As
another example, consider the sensor network illustrated
in Section 4.4, Fig. 7a, with suboptimal track coverage
T 3
A=T maxA ¼ 0:183, n ¼ 20, and w ¼ 24 km. When this net-

work is repositioned using the above NLP, track coverage
is improved by 69.4 percent. Thus, the methodology
presented in this paper can be used to improve the track
coverage of a sensor network by allowing existing sensors
in A to maneuver subject to power and energy constraints.

8 SUMMARY AND CONCLUSIONS

This paper presents a novel track coverage formulation
addressing the quality of service of sensor networks
performing cooperative target detection. In many surveil-
lance applications, simple (e.g., proximity) sensor networks
are employed to detect the tracks of passive unauthorized
targets in an ROI through multiple elementary detections in
an approach known as track-before-detect. This paper
investigates the geometric properties of these networks
and formulates optimal deployment strategies for coopera-
tive sensor detection using geometric transversals. A novel
methodology is presented for representing sets of geo-
metric transversals and a Lebesgue measure on these sets in
closed form. Consequently, track coverage can be opti-
mized by solving an NLP. The numerical results show that
NLP deployment can increase track coverage by up to two
orders of magnitude compared to existing grid and random
deployment schemes. Also, it can decrease the number of
sensors required to provide a desired probability of track

detection by up to 50 percent compared to existing path

exposure techniques. Finally, it can significantly improve

track coverage by replenishing or repositioning an existing

sensor network that displays suboptimal performance due

to errors in its initial deployment or to sensors being

displaced by their environment.

APPENDIX A

NOMENCLATURE

. A: Rectangular ROI

. Ci ¼ Cðsi; riÞ: Circle with radius ri centered at si

. coneðXÞ: Cone generated by X

. �b: Size of discretization increments

. �i: Angle formed by l̂i with the x-axis

. ĥi: Upper unit vector generating KðCi; y0Þ

. ĥ	: Upper unit vector generating KkðSk; y0Þ

. IS : Index set of S

. KðCi; y0Þ: Cone generated by Ci with origin y0

. KkðSk; y0Þ: k-Coverage cone of Sk with origin y0

. KkðS;AÞ: Set of tracks traversing A and intersecting
at least k sensors in S

. KkðS; y0Þ: Set of tracks through y0 and intersecting at
least k sensors in S

. l̂i: Lower unit vector generating KðCi; y0Þ

. l̂	: Lower unit vector generating KkðSk; y0Þ

. L1 and L2: Width and height of A

. �i: Angle formed by ĥi with the x-axis

. �ðS; y0Þ: Set of lower unit vectors generating the
coverage cones of all circles in S with origin y0

. �ðS; y0Þ: Set of upper unit vectors generating the
coverage cones of all circles in S with origin y0

. Pk
AðXSÞ: Probability of track detection

.  ðSk; y0Þ: Opening angle of KkðSk; y0Þ

. Q�i and Qþi : Clockwise and counterclockwise rota-
tion matrices, respectively

. ri and si: Range and position of sensor i, respec-
tively

. R�ðbyÞ: Ray with y-intercept by and slope tan�

. �ðSk; y00Þ: Opening angle of KkðSk; y00Þ

. S: Set of n sensors
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Fig. 15. A suboptimal sensor network with n ¼ 40 and a maneuvering region with w ¼ 24 km (dashed line) in (a) is optimally repositioned using NLP

in (b).



. Sk: Set of k sensors

. Sjk: jth k-subset of S

. T ky0
ðXSÞ: Measure of the set of tracks in KkðS; y0Þ

. T kAðXSÞ: Measure of the set of tracks in KkðS;AÞ

. �i: Half the opening angle of KðCi; y0Þ

. vi: Relative-position vector of sensor i

. v̂i: Unit relative-position vector of sensor i

. 
ðSk; x00Þ: Opening angle of KkðSk; x00Þ

. 	ðSk; x0Þ: Opening angle of KkðSk; x0Þ

APPENDIX B

PROOF OF REMARK 4.1

Let R�ðbyÞ denote a ray that intersects Ci ¼ Ciðsi; riÞ in IR2
þ.

Consider any two points that lie on R�ðbyÞ and inside
Ciðsi; riÞ and let u1; u2 2 IR2

þ denote their positions relative to
the origin y0 of the coverage cone KðCi; y0Þ. By construction,
u1; u2 2 Ciðsi; riÞ and a vector z joining the two points will lie
on the ray R�ðbyÞ. Let c1 and c2 denote any two positive
constants. By definition of vector sum and subtraction [33], if
z ¼ c1u1 þ c2u2, then z has the same origin as u1 and u2. Thus,
since z lies onR�ðbyÞ,R�ðbyÞ intercepts the y-axis at the cone
origin y0. If z ¼ �c1u1 � c2u2, z does not have the same origin
as u1 and u2 and, thus,R�ðbyÞ does not intercept the y-axis at
y0. By definition, KðCi; y0Þ is the set of all nonnegative
combinations of the elements in Ci. Since u1 and u2 are two
elements in Ci, and any nonnegative combination of these
two elements can be written as c1u1 þ c2u2, with c1; c2 > 0, it
follows that z ¼ c1u1 þ c2u2 2 KðCi; y0Þ. Finally, sinceR�ðbyÞ
denotes any ray with intercept by that intersectsCi ¼ Ciðsi; riÞ
in IR2

þ and z ¼ c1u1 þ c2u2 provided R�ðbyÞ intercepts the
y-axis at y0, it also follows that any R�ðbyÞ that intersects Ci
and the y-axis at y0 is contained by KðCi; y0Þ. tu

APPENDIX C

PROOF OF PROPOSITION 4.2

This proof considers a family of k ¼ 3 nontranslates S3 ¼
fCi; Cj; Clg with index set IS3

¼ fi; j; lg. The results can be
extended to higher k by induction. From Remark 4.1, a
coverage cone KðC‘; y0Þ contains the set of all tracks RðbyÞ
that intersect C‘ in IR2

þ, where ‘ 2 IS3
. Then, from set theory,

the set of tracks intersecting all circles in the family S3 is
given by the following intersection:

K3ðS3; y0Þ ¼
\
‘2IS3

KðC‘; y0Þ

¼ KðCi; y0Þ \KðCj; y0Þ \KðCl; y0Þ:
ð35Þ

From the properties of cones [32, p. 70], the intersection of a
collection of cones is also a cone. Thus,K3ðS3; y0Þ is a cone. A
vector z representing a rayR lies in a coneK if and only ifR
lies inK since any point onR can be written as cz, with c > 0.

Consider any ray R‘ 2 KðC‘; y0Þ, where KðC‘; y0Þ ¼
coneðl̂‘; ĥ‘Þ and, thus, can be represented by a vector z‘ ¼
c1 l̂‘ þ c2ĥ‘ with constants c1; c2 > 0. Then, z‘ 2 KðC‘; y0Þ
and, by the properties of vector sum, l̂‘ � z‘ � ĥ‘. Next,
consider a cone K	 ¼ coneðl̂	; ĥ	Þ that is finitely generated
by two unit vectors ĥ	 ¼ ĥ| and l̂	 ¼ l̂{ with |; { 2 IS3

and
assume l̂{ � ĥ|. By the properties of finitely generated cones

[32], any vector z	 ¼ b1 l̂
	 þ b2ĥ

	 with constants b1; b2 > 0

must lie in K	. It follows that a ray R	 with the same slope
and origin as z	 must also lie in K	 since any point on R	
can be written as cz	 with c > 0. Since z	 is a positive
combination of l̂	 and ĥ	, it also follows that l̂	 � z	 � ĥ	.

According to Proposition 4.2, choose ĥ	 ¼ ĥ| 
 ĥ‘ and

l̂	 ¼ l̂{ � l̂‘ for 8‘ 2 IS3
. Suppose the unit vectors of S3 can be

ordered as ĥl � ĥj � ĥi and l̂i � l̂l � l̂j. Then, the unit

vectors and z	 can be ordered as follows:

l̂‘ 
 l̂j ¼ l̂	 � z	 � ĥ	 ¼ ĥl 
 ĥ‘ for 8‘ 2 fi; j; lg ¼ IS3
; ð36Þ

or, more explicitly,

l̂i � l̂l � l̂j ¼ l̂	 � z	 � ĥ	 ¼ ĥl � ĥj � ĥi: ð37Þ

Since the above order also implies l̂‘ � z	 � ĥ‘ for 8‘ 2 IS3
,

then z	;R	 2 KðC‘; y0Þ for 8‘ 2 IS3
. Thus, from (35),

z	;R	 2 K3ðS3; y0Þ ¼ K	 ¼ coneðl̂	; ĥ	Þ, provided l̂	 and ĥ	

are chosen subject to (36). So far, it was assumed that

l̂{ � ĥ|. If the unit vectors in �ðS3; y0Þ and �ðS3; y0Þ are such
that l̂{ � ĥ|, then there are no vectors that can satisfy the

order l̂{ ¼ l̂	 � z	 � ĥ	 ¼ ĥ|, and K3ðS3; y0Þ ¼ K	 ¼ ;. tu

APPENDIX D

LINEAR OPERATIONS FOR ORDERING UNIT VECTORS

This appendix illustrates a methodology for efficiently
ordering sets of unit vectors according to a fixed frame of

reference. Consider a set of unit vectors fû1; . . . ; ûng with
index set I. Any unit vector can be written in terms of its

direction sine and cosine, namely, ûi ¼ ½cos �i sin �i�T , for
8i 2 I. We seek to order the unit vectors according to the

xy-frame, therefore �i can also be viewed as the angle
that ûi makes with the x-axis. Then, for any two unit

vectors ûi and ûj in the first and fourth quadrant, ûi � ûj
if and only if sin �i < sin �j. From Proposition 4.2, it is of

interest to obtain the first or last element of a list
comprised of these unit vectors in ascending order:

fû|; ûl; . . . ; û{g with û| 
 ûl 
 . . . 
 û{. The first and last
elements, û| and û{, can be obtained without ordering the

entire set, using the following pairwise linear operations on
the direction sines of the unit vectors:

sin �| ¼
1

2
sin �i þ sin �j � j sin �i � sin �jj

 �

; ð38Þ

sin �{ ¼
1

2
sin �i þ sin �j þ j sin �i � sin �jj

 �

; ð39Þ

where i 6¼ j, 8i, j 2 I. It can be easily shown that the
unit vectors generating cones with origin y0 always lie

in the first or fourth quadrant. Thus, the k-coverage

cone KkðSk; y0Þ can be obtained by applying (38) to

�ðSk; y0Þ and by applying (39) to �ðSk; y0Þ, as shown in
Proposition 4.2.

The k-coverage cones defined with respect to the x, y0,
and x0 axes (Section 4.3) can also be obtained by applying

(38) and (39) to the corresponding sets of unit vectors,
provided they first undergo a constant rotation. Let the

rotation matrices
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Q90 � 0 1
�1 0

� �
; Q180 � 1 0

0 1

� �
; and Q270 � 0 �1

1 0

� �
ð40Þ

denote clockwise rotations by 90 degree, 180 degree, and
270 degree, respectively. Then, (38) and (39) are applied to
the rotated unit-vector sets, �R and �R, obtained by the
following linear operations:

�RðSk; x0Þ � fĥRi j ĥRi ¼ Q90ĥi; 8ĥi 2 �ðSk; x0Þg; ð41Þ

�RðSk; y00Þ � fĥRi j ĥRi ¼ Q180ĥi; 8ĥi 2 �ðSk; y00Þg; ð42Þ

�RðSk; x00Þ � fĥRi j ĥRi ¼ Q270ĥi; 8ĥi 2 �ðSk; x00Þg: ð43Þ

The sets �RðSk; �Þ are defined by substituting � with � in
the above three equations. The rotated unit vector sets are
only used to determine the indices |; { 2 ISk of the unit
vectors generating a k-coverage cone (Proposition 4.2). Once
the indices are determined, unit vectors ĥ| and l̂{ generate
the cone KkðSk; �Þ (Section 5).

APPENDIX E

PROOF OF THEOREM 5.1

We seek a measure � on the set of tracks KkðS; y0Þ given by
(9). Since KkðS; y0Þ is the union of m sets that may or may
not be disjoint, we apply the principle of inclusion-
exclusion [36]

�ðKkðS; y0ÞÞ ¼ �
[m
j¼1

KkðSjk; y0Þ
 !

¼
Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
�ðKkðSi1k ; y0Þ \ . . . \KkðSijk ; y0ÞÞ;

ð44Þ

where

m ¼ n
k

� �
¼ n!

ðn� kÞ! k!
and

X
1�i1<...<ij�m

is a sum over all the ½m!=ðm� jÞ! j!� distinct integer j-tuples
ði1; . . . ; ijÞ satisfying 1 � i1 < . . . < ij � m. Also, �ð�Þ de-
notes a measure on the set. Since the right-hand side of (44)
is an intersection of cones, it is also a cone on which we can
impose the Lebesgue measure �.

Now, consider the intersection of cones KkðSi1k ; y0Þ \
. . . \KkðSijk ; y0Þ inside the inner summation in (44). Silk
denotes the ilth k-subset of S, il is a positive integer
between 1 and ij � m, and m is the total number of
k-subsets in S. By the properties of cones, this intersection is
also a cone and represents the set of tracks through y0 that
intersect all sensors in Sp ¼ fSi1k [ . . . [ Sijk g. Based on the
properties of k-subsets, this set must contain k � p � n
elements of S and, thus, is a p-subset of S. Based on the
properties of k-coverage cones (Proposition 4.2), the set of
line transversals of Sp through y0 can be represented by the
p-coverage cone KpðSp; y0Þ ¼ KpðSi1k [ . . . [ Sijk ; y0Þ. There-
fore, (44) can be written as

�ðKkðS; y0ÞÞ ¼Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
�ðKpðSi1k [ . . . [ Sijk ; y0ÞÞ;

ð45Þ

where p is the number of elements in the union of

j k-subsets of S. Finally, since a Lebesgue measure on a

k-coverage cone is its opening angle, a Lebesgue measure on

KkðS; y0Þ is

T ky0
¼ �ðKkðS; y0ÞÞ

¼
Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
 ðSi1k [ . . . [ Sijk ; y0Þ:

ð46Þ

The opening angles in the above summation are given by

(5) and (6) and, thus, T ky0
is a function of the sensors

positions XS ¼ fs1; . . . ; sng. tu

APPENDIX F

EXPLICIT OPENING ANGLE EQUATIONS

Let  ¼  ðSk; y0Þ denote the opening angle of the k-coverage

cone KkðSk; y0Þ for 8k, 1 � k � n, and y0 � ½0 by�T . Then,

according to Section 4.2, the cone is finitely generated by

two unit vectors l̂{ and ĥ| obtained from � and � such that

{; | 2 ISk and l̂{ � l̂i 2 �ðSk; y0Þ and ĥ| 
 ĥi 2 �ðSk; y0Þ for

8i 2 ISk (as shown in Appendix D). Letting { and | denote

the indices of these unit vectors and using (16), the opening

angle can be written explicitly as a function of XS :

 ¼ H½detðM{|Þ� � sin�1½detðM{|Þ�;
detðM{|Þ ¼ 1

w2
{ w

2
|
f½x{q{ þ ðy{ � byÞr{�½x|r| þ ðy| � byÞq|�

�½x|q| � ðy| � byÞr|�½ðy{ � byÞq{ � x{r{�g;
wi � kviðy0Þk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2
i þ ðyi � byÞ

2
q

; qi �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w2
i � r2

i

p
;

i ¼ {; |;

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
;

ð47Þ

where XS ¼ fsiji 2 ISg, ISk � IS , and si � ½xi yi�T for 8i.
The opening angles of the k-coverage cones defined with

respect to the other axes are similarly derived by redefining

the relative position vector vi, as shown in [46].

APPENDIX G

TOTAL TRACK COVERAGE

Consider the union of k-coverage cones KkðS; y0Þ, represent-

ing the set of tracks through y0 that are detected by at least

k sensors in S and given by (9). Since all cones in this union

are generated by objects in IR2
þ, KkðS; y0Þ only contains

cones in the first and fourth quadrant of the xy-reference

frame and its measure T ky0
in (18) is bounded from above by

�. This upper bound corresponds to the case in which

KkðS; y0Þ is a nonconvex cone and is a half space with x � 0.

By induction, the measures T kx0
, T ky0

0
, and T kx0

0
are all

bounded from above by �, for any value of the intercept.

Thus, the upper bound on the track coverage function is

obtained by substituting T ky‘
0
¼ T kx‘

0
¼ T ky0‘

0
¼ T kx0‘

0
¼ � for

any value of ‘ in (22):
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T maxA ¼ 1

2

XN2

‘¼1

ð�þ �Þ þ 1

2

XN1�1

‘¼0

ð�þ �Þ

¼ N2�þN1� ¼
L1 þ L2

�b

� �
�:

ð48Þ

APPENDIX H

PROBABILITY OF TRACK DETECTION

Let the ray R�ðb‘yÞ denote a track with intercept value b‘y 2
I y � ½0; L2� and let Dk denote a cooperative detection event

such that Dk ¼ 1 if a target is detected by at least k sensors

and Dk ¼ 0 otherwise. Also, let Prðb‘yÞ denote the prior

probability that a target enters A at y‘0 ¼ ½0 b‘y�
T . Then, the

probability that a target enters A at y‘0, and is detected by

k sensors is

PrfR�ðb‘yÞ; Dk ¼ 1g ¼ PrðbyÞ � PrðKkðS; y‘0ÞÞ; ð49Þ

where PrðKkðS; y‘0ÞÞ denotes the probability that the track

lies inside the set KkðS; y‘0Þ. Now, assuming that all

y-intercepts are equally likely, Prðb‘yÞ ¼ �b=ðL2 þ �bÞ. Also,

assuming that all directions � 2 ð��=2;þ�=2Þ are equally

likely, (49) can be written as

PrfR�ðb‘yÞ; Dk ¼ 1g ¼ �b

ðL2 þ �bÞ

� 1
�

Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
 ðSi1;jp ; y‘0Þ;

ð50Þ

where  ðSi1;jp ; y‘0Þ is the opening angle of the p-coverage cone

of the p-subset of S that is defined as the union

fSi1k [ . . . [ Sijk g, for every tuple ði1; . . . ; ijÞ in the inner

summation (as shown in Appendix E).
Since sets KkðS; y‘0Þ with different values of y‘0 are always

disjoint, the probability that a target enters A through I y
and is detected by k sensors is

PrfR \ I y 6¼ ;; Dk ¼ 1g ¼
XN2

‘¼0

PrfR�ðb‘yÞ; Dk ¼ 1g

¼ �b

�ðL2 þ �bÞ
�
XN2

‘¼0

Xm
j¼1

ð�1Þjþ1
X

1�i1<...<ij�m
 ðSi1;jp ; y‘0Þ:

ð51Þ

Similarly, the probability that Dk ¼ 1 and the target

intersects the sides Ix, I y0 , and Ix0 can be obtained in

terms of the opening angles. Then, the probability that a

target traverses A and Dk ¼ 1 is obtained by considering

the probability of the union of intersecting sets [47]. The set

of tracks that traverse A and are detected by at least

k sensors is given by the union KkðS;AÞ in (12). Since every

track in this union intersects two sides of A and belongs to

two k-coverage cones, the intersection of these cones is

equal to its complement Pk
AðXSÞ � PrfR \ A 6¼ ;; Dk ¼ 1g

and, thus, (28) follows. It can be easily shown by

substituting the same upper bounds used in Appendix F

in (28) that, when the sensor network provides total track

coverage, Pk
A ¼ 1.
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