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Abstract—There is considerable precedence in the sensor trackingand estimation literature formodelingmaneuvering targets byMarkov
motion models in order to estimate the target state from multiple, distributed sensor measurements. Although the transition probability
density functions of these Markov models are routinely outputted by tracking and estimation algorithms, little work has been done to use
them in sensor coordinationandcontrol algorithms. This paper presentsageometric transversals approach for representing theprobability
of track detection by multiple, distributed sensors, as a function of the Markovmodel transition probabilities. By this approach, the Markov
parameters of maneuvering targets that may be detected by the sensors are represented by three-dimensional cones that are finitely
generated by the sensors fields-of-view in a spatiotemporal Euclidian space. Then, the problem of deploying a sensor network for the
purpose ofmaximizing the expected number of target detections can be formulated as a nonlinear program that can be solved numerically
for the optimal sensor placement. Numerical results show that the optimal sensor placements obtained by this geometric transversals
approach significantly outperform greedy, grid, or randomized sensor deployments.

Index Terms—Detection theory, geometric transversals, nonlinear optimization, sensor networks, target tracking, track coverage

1 INTRODUCTION

THE problem of placing multiple sensors for the purpose of
providing a desired quality-of-service (QoS) in a region-

of-interest (RoI), also known as sensor network deployment, is
relevant to a wide range of sensor applications, including
security and surveillance, environmental and atmospheric
monitoring, and tracking of endangered species [1], [2]. In
particular, when sensors are deployed in order to coopera-
tively detect and track moving targets in an RoI they can be
placed to optimize the network’s QoS known as track cover-
age. Track coverage represents the ability of a sensor network
to cooperatively obtain non-simultaneous detections of a
single target during its transit through the RoI [3]–[5]. As a
result, track coverage is related to the probability of coopera-
tively detecting target tracks over time.

A target track is said to be detected when it can be formed
from multiple independent sensor detections using an as-
sumed prior spatio-temporal model. Multiple independent
detections are required by cost-effective sensors that have
limited detection capabilities, and are subject to frequent false
alarms. Existing track coverage functions have been success-
fully utilized in deployment, control, and coordination algo-
rithms to significantly increase the effectiveness of the sensor
network by controlling and, in some cases, optimizing QoS
with respect to the sensors’ positions [4]–[12]. However, these

existing track coverage functions assume that the targets
travel with constant heading and speed [5]–[10], or that the
sensors are uniformlydistributed andhave constant range [4],
[11], [12].

The method presented in this paper relaxes all of these
assumptions, and extends the geometric transversals ap-
proach in [5] to a three-dimensional Euclidian space repre-
senting the sensor-target spatio-temporal coordinates. In this
space, the Markov parameters of maneuvering targets can
be represented by three-dimensional cones that are finitely
generated by the sensors’ fields-of-view (FOVs). There is
considerable precedence in the sensor tracking and estimation
literature for modeling target tracks by Markov motion
models in order to estimate the target state from multiple,
distributed sensor measurements [13]. Although the transi-
tion probability density functions of theseMarkovmodels are
routinely outputted by tracking and estimation algorithms
[13], little work has been done to use them as a feedback to
sensor coordination and control algorithms.

This paper derives the probability of track detection in
closed-form, as a function of the target Markov model transi-
tion probabilities and of the sensors’ ranges and positions in
the RoI. The motivation for deriving coverage functions
expressing the QoS of wireless sensor networks in closed
form is that they can be utilized to deploy the sensors via
control and optimization theory and algorithms [5]–[7]. The
numerical simulations presented in this paper show that
sensors deployed by optimizing this new track coverage
function are significantly more effective than sensors
deployed using other applicable deployment methods, such
as, greedy or incremental algorithms [14]–[16], grid place-
ment algorithms [17], circle-packing algorithms [18], and
randomized strategies [19].
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2 PROBLEM FORMULATION

This paper addresses the problemof deploying a network of
fixed omnidirectional sensors for the purpose of obtaining
multiple track detections for amaneuvering target. The target
is assumed to obey aMarkovmotionmodel that is commonly
implemented by multi-sensor multi-target tracking algo-
rithms [20], [21]. In Markov motion models, the target
movement is modeled by a Markov chain characterized by
probability distributions that are typically computed via
Kalman filtering based on prior sensor measurements.

A Markov chain is defined as a sequence of correlated
random variables, , that obey the Markov property
bywhich the future states only depend on past states through
the present state, i.e.,

where, lower-case letters denote numerical values of the
random variables [22]. The probability law, or probability
function, denoted by , obeys the three axioms of proba-
bility [22]. Then, based on theMarkov property, the evolution
of the state can be described by a transition probability
function [23].

Let the random variables and represent the target
heading and velocity, respectively. Consider the target mo-
tion in a region-of-interest (RoI) A R , during a finite time
interval . A three-dimensional real-valued vector func-
tion maps the family of random variables into the
random vector at every time ,

where and denote the target’s -coordinates with respect
to an inertial frame of reference embedded inA, and the third
component of the vector function is the identity function.

Assuming the target heading and velocity are constant
during a time interval , with ,
where is not necessarily constant, the target
motion can be modeled as a Markov chain as follows. Let
denote the target position at the beginning of the time
interval, namely, , for . The target head-
ing and velocity during are denoted by two random
parameters H and V, respectively, whereH

represents the range of all possible target heading
values, and V represents the range of all possi-
ble target velocity values. Then, the linear differential equa-
tion (2) can be integrated with respect to time to obtain the
Markov motion model,

for the time interval . By this approach, the target
motion is described by the evolution of the random variables
, , and , referred to as Markov motion parameters, and

denoted by the set M .
As illustrated in Fig. 1, a realization of the above Markov

motionmodel is a trajectory inwhich the heading andvelocity
are piece-wise constant, while the -coordinates are

variables with discontinuities at every time instant
, , when the target is said to maneuver, thereby

changing both heading andvelocity. Thesemaneuvering time
instants are not necessarily equally spaced and, in this paper,
they are assumed known for simplicity. However, the ap-
proach can be easily extended to unknown maneuvering
times, by considering as another random variable of the
Markov motion model.

The probability density functions (PDFs) of the Markov
motion parameters, M, are computed from prior measure-
ments using target tracking algorithms [20], [21]. For simplic-
ity, in this paper, it is assumed that these PDFs are given, and
that, during every interval , the Markov parameters

are independent random variables. Also, it is
assumed that the target heading and velocity at the th time
interval, , are independent of the Markov parameters
at the th interval, . Thus, the probability that
and take any of the values in their ranges during is
given by the PDFs and , respectively. From (3) it
can be seen that the probability that takes any of its possible
values inA depends on the values of the Markov parameters
during the th interval. Thus, the PDF of can be
obtained as follows,

for , where all of the PDFs are known from the
previous time interval.

In this paper, the set of sensors deployed to detect and
track the maneuvering target is assumed to be fixed and
omnidirectional. In particular, it is assumed that every sensor
can be described by an omnidirectional boolean sensing
model that has been used to model a variety of sensors,
including passive acoustic sensors, radars, and electromag-
netic sensors [24]. Every sensor in the network, indexed by ,
has a constant sensing range > that may depend on its
detection threshold, and is to be placed at a position

A. For simplicity, it is also assumed that the
sensor positions are all fixed and deterministic, and that the

Fig. 1. Example of target track sampled from aMarkovmotionmodel inA
(black) and in (red).
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RoI is a square regionA . Under these assump-
tions, the th sensorfield-of-view (FOV) can be represented by
a disk C C A, centered at , and with a constant
radius , for . By definition, a sensor can only
detect a target if it enters its FOV at time . Thus, the sensing
model is

C
>

where, is the probability of detection or, in otherwords, the
probability that the target track will intersect C at time

. The approach can also be extended to moving
sensors and other ROIs, as will be shown in a separate paper.

We are now ready to formulate the three problems ad-
dressed in this paper, namely:

Problem 2.1 (Probability of Detection). Given the PDFs of
theMarkovparametersM for a target in anRoIA

, find the probability of detection for an omni-
directional sensor at time as a function of
the range R, and position A.

Problem 2.2 (Track Coverage). Given the PDFs of the
Markov parameters M for a target in an RoI A

, find the track coverage of sensors, defined as the
expected number of target detections during a time
interval , as a function of the sensors’ positions,

, and ranges, .

Problem 2.3 (Sensor Placement). Given the PDFs of the
Markov parameters M for a target in an RoI A

, find the sensor positions that
maximizes the expected number of target detections
during a time interval .
In the following sections, Problems 2.1–2.3 are addressed

by extending the geometric transversals approach first
proposed in [3], [5] to maneuvering targets described by
Markov motion models.

3 COVERAGE CONE REPRESENTATION OF TRACKS
DETECTED BY ONE SENSOR

In this section, we show that allMarkov target tracks detected
by an omnidirectional sensor at time are con-
tainedby a three-dimensional cone that canbeused todefine a
Lebesgue measure of track coverage (Section 4). In [5], it was
shown that in the case of non-maneuvering targets, a two-
dimensional (2D) coverage cone (Fig. 2) canbeused toderive a
Lebesguemeasure of all tracks through an intercept that are
detected by an omnidirectional sensor positioned at . Be-
cause the Lebesguemeasure is provided by the opening angle
of the coverage cone, , it follows that a measure of track
coverage can be obtained by the dot product of the generating
unit vectors and , and, thus, can bewritten conveniently in
closed-form, as a function of and . It also follows, under
proper assumptions, that the probability of detection can be
obtained solely as a function of [5].

In the case of maneuvering targets, the track detection
problem cannot be viewed as time invariant or, in other
words, the probability of detection is an explicit function of
time. Hence, we consider the spatio-temporal Euclidian

subspace A R , such that during the
target track can be represented by a time-varying vector with
constant orientation , referred to as Markov track.
Now, let the origin of , denoted by , coincide
with the origin of a local coordinate frameF . Then, as shown
in Fig. 3, at any time , the Markov track can be
defined in cylindrical coordinates , where is a
constant, represents the time elapsed since the
maneuvering time , and represents the distance
traveled. In other words, is the target position at

, relative to F , which can be expressed as
in cylindrical coordinates.

Given the nonempty subset C of , the cone generated by
C is the set of all nonnegative combinations of the elements of
C , denoted by C (see [25] for a review of
cones and their properties). Then, in the remainder of the
paper, we define the coverage cone of the th sensor at

to be the cone generated by C , with origin
, as illustrated by the example in Fig. 3. The coverage

cone is a basic construct for analyzing the probability of track
detection because it represents the set of Markov tracks that
can be detected by the th sensor at time . Since, in this paper,
the origin is a random but constant vector, the coverage
cone is a time-dependent, random object in .

If we consider an inertial frame F , embedded in , the
coverage cone at time can be parameterized as
follows,

R

where denotes the -norm. From the omnidirectional
boolean sensing model, sensor has a non-zero probability to
detect the target if and only if . It follows that
the coverage cone (6) contains all Markov tracks that can be
detected during , as summarized by the following
remark:

Remark 3.1. The coverage cone , defined in (6), contains
the set of all Markov tracks with origin
that intersect the sensor FOV, C C , at any time

.

Fig. 2. Coverage cone for a target traveling along a straight line (adapted
from [5]).
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Proof. Let be anyMarkov track with origin
that intersects C C at some time , i.e.

C . Let denote a unit vector in
F that is collinear with , and shares the same origin .
Without loss of generality, assume the unit vector points
from to the target position in at , such that . It
follows that can be written in terms of , i.e.:

R

where the constant can be determined from the fact that
. Moreover, the target position in F at time

can be obtained from as follows,

From the boolean omnidirectional sensor model (5), a
Markov track intersects the sensor’s FOV C at some time

if and only if the target position satisfies
, or:

Considering any point , it follows
from (7) that,

and, thus, from the definition of , any unit vector collinear
with satisfies

From (8) and (10), it follows that for any target at
to be detected by the th sensor, the condition,

must be satisfied.
Since (11) is equivalent to the parameterized represen-

tation of the coverage cone (6), it follows that for any target
at to be detected by the th sensor at ,

must be contained by . ◽

4 UNIT VECTOR REPRESENTATION OF
COVERAGE CONE

The coverage cone , defined in (6) and illustrated in Fig. 3, is
a 3D circular cone that is possibly oblique. As a result, it is not
easy to identify a Lebesgue measure for in terms of the
Markov parameters M. This section shows that it is possible
to represent any 3D coverage cone with the parametrization
(6) by two2Dcones that also provide lower andupper bounds
for the heading and velocity of any Markov track con-
tained by . The two cones, referred to as heading cone and
velocity cone, are derived in the following subsections, and
then illustrated through an example in Fig. 4.

4.1 Heading Cone
The heading cone, denoted by , is obtained by projecting
the 3D coverage cone onto a so-called heading planedefined as,

such that it is parallel to the -plane and contains . Since the
heading plane contains all of the possible target headings H,
the heading cone can be used to represent the headings of all
targets detected by the th sensor, during the th time interval

Fig. 4. Heading-cone (cyan) and velocity-cone (yellow) representation of
coverage cone (green) for the example in Fig. 3.

Fig. 3. Definition of Markov track and coverage cone for a maneuvering
target in .
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. In particular, the extremals of can be described in
F by two unit vectors,

and

where, is the position of the sensor relative to
themaneuvering point , and is half the opening angle of

, that is,

Then, the heading cone can be defined as the cone that is
finitely generated by and , i.e.:

C R

It can be seen that the heading cone is analogous to the
2D coverage cone first illustrated in Fig. 2, which was intro-
duced in [5] to analyze track coverage for non-maneuvering
targets.

4.2 Velocity Cone
Consider now a so-called velocity plane that represents the
space of all spatio-temporal target coordinates in F with a
constant heading . The velocity plane is defined as,

such that it is perpendicular to A, and contains . Then,
the velocity cone, denoted by , can be defined as the
intersection of the 3D coverage cone (6), and the velocity
plane (17).

Now, let all coplanar unit vectors be ordered based on the
orientation of an inertial reference frame embedded in the
velocity plane (17) such that, for any two coplanar unit vectors

and , we say that if when these vectors are
translated such that their origins coincide, and is rotated
through the smallest possible angle to meet , the rotation is
in the same direction as the orientation of the reference frame.
Then, contains all possible target velocities that would
cause a detection by sensor at , provided the
target heading satisfies the condition,

or, in other words, the Markov track is contained by both ,
and .

At time , the extremals of can be described by two unit
vectors in F ,

�

and,

!

where and are the angles that � and ! make with
the -axis, respectively, defined as

For , and are less than or equal to . Then,
the velocity cone can be defined as the cone that is finitely
generated by � and ! , i.e.:

C R � !

The results obtained in this section can be summarized by
the following remark:

Remark 4.1. The coverage cone , defined in (6), can be
represented by the pair of 2D cones , defined in
(16) and (22).

Proof. Suppose is any Markov track in the coverage cone
, or , and let denote a unit vector

that is collinear with , and has the same origin where,
all quantities are definedwith respect toF .Without loss of
generality, assume > . Then, can be represented in
terms of as shown in (7), and substituted into the
coverage cone equation (6) to obtain

Choose the nonnegative constant such that
, because during the th

time interval. Then, (23) can be simplified to,

where the vector is the projection of the
Markov track on the heading plane (12). The projection

can be expressed as a linear combi-

nation of and , because and are linearly
independent.Hence, there exist twononnegative constants

R, such that

where from Section 4.1.
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Substituting (25) in (24), and dividing both sides by
, (24) can be rewritten as,

where . From the definition of in (16),
the following holds,

where denotes the dot product. Then, taking the square
of both sides of (26), which are both positive quantities,

and substituting (27) in (28), (28) can be simplified to

Because , the following inequality holds
for any two nonnegative constants and :

Substituting (30) in (29), (29) can be rewritten as,

where, to satisfy (31) and can not be both less then or
equal to zero. We now show that and must have the
same sign, by rewriting (29) such that

Then, it follows from (31) and (32) that both and

are strictly positive. Since , and
are both greater than or equal to zero. Therefore, letting

and , the projection of any
Markov track onto the heading plane (25) can be
written as

Comparing (33) with the definition of the heading cone
in (16), it can be seen that the projection (33) of any

Markov track in must also lie in the heading cone .
Since (33) holds for any , it follows that contains
the projections of all Markov tracks in onto the heading
plane (25).

We nowprove that anyMarkov track must also
lie in the velocity cone, . In this case, the unit vector is
expressed in spherical coordinates, i.e. ,
where is the angle that makes with the -axis, and
is the azimuth angle that the projection of onto the
heading plane (25) makes with the -axis. Using the con-
version from Cartesian to spherical coordinates, can be
written as

and the coverage cone equation (6) can be written in
spherical coordinates, as follows

Since both sides of (35) are nonnegative quantities they
can be squared and re-arranged to obtain the inequality

From (36), upper and lower bounds for the angle can
be obtained as follows,

and compared to the tangents of and , defined in
(21), to show that,

where, from (21), .
Since lies in the velocity plane, there exist two con-

stants R, such that

� !

From (22), if and are nonnegative, then .
Substituting (19) and (20) in (39), and dividing both sides
by , it follows that

because for . The tangent of can be
obtained as follows,
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and substituted into (38), such that the two inequalities in
(38) can be re-written as,

and

thereby eliminating .

From (21), and because .
Also, substituting (41), (42), and (43) in (38), the
inequalities,

and,

are obtained. Since byassumption , and
must be greater than or equal to zero for (44) and (45) to

hold simultaneously. Moreover, since , it
follows that and . Thus, any
Markov track can be written as,

� !

and, thus, from the definition of the velocity cone (22), it
follows that .

Since the above proof holds for any Markov track with
target heading that obeys (18), it also follows that
contains allMarkov tracks in with this property. In other
words, anyMarkov track in the coverage cone also lies in a
velocity cone, such that its projection onto the heading
plane simultaneously lies in the corresponding heading
cone. As a result, can be represented by the pair of 2D
cones { }. ◽

Example. Consider the target trajectory plotted in Fig. 5,
obtained by sampling the Markov motion model
described in Section 8. A sensor located at

(m), with range (m), detects the
target at a time (s) with . Since

, and , it can be seen
from Fig. 5 that the target Markov track, , is contained
by , and that can be represented by the correspond-
ing velocity cone and heading cone , also plotted in
Fig. 5.

From Remark 4.1, the heading cone and the velocity cone
contain all Markov tracks with origin that are detected
by sensor at any time . For any 2D cone with
origin , the opening angle defines a Lebesgue measure on
the set of line transversals through [5]. Therefore, and
can be used to define a Lebesgue measure on the set of tracks
detected as a function of the sensor position , and range .
Furthermore, a cone opening angle can be computed from the
cross product of the two unit vectors from which the cone

is finitely generated, as follows. The opening angle of the

heading cone , finitely generated by and , is

where, denotes the Heaviside function, and de-
notes the matrix determinant.

Similarly, the openingangle of thevelocity cone ,finitely

generated by ! and � , is

! �

! � ! �

where, the unit vectors! and � are a function of time and,
thus, so is the opening angle of . The Heaviside function

in (47) and (48) ensures that if , or

! � , the corresponding opening angles are equal
to zero, indicating that or , respectively. In the
next section, the heading and velocity cones and their prop-
erties, are used to derive the probability of track detection in
closed-form.

5 PROBABILITY OF DETECTION

The Lebesgue measures (47) and (48) can be used to quantify
the tracks detected by a sensor , during a time interval

, when the PDFs of the Markov parameters are uni-
form. This case typically comes about when no prior target
information is available, and all target tracks are equally
probable. In many target-tracking applications, however, the
PDFs of the Markov parameters are not uniform, and are
computed from sensor measurements via Kalman filtering.

Fig. 5. Example of track detected at (s), and contained by the
coverage cone (green) or, equivalently, by (dashed green line) and

(black).
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This section builds on results presented in Sections 3–4 to
derive the probability of track detection as function of the
sensor position, range, and the PDFs of the Markov
parameters.

From the definition of joint PDF [22] and the Markov
property of the target motion model, the probability that the
values of the Markov parameters during the th time interval

fall in a subset A H V is,

where denotes the joint PDF of , , and . Based on
the assumptions in Section 2, the parameters at the th time
interval are independent and, thus, the joint PDF can be
factorized such that,

where all of the PDFs in (50) can be obtained from (4) and a
target-tracking algorithm.

From the results in Section 4, the heading cone and the
velocity cone contain the Markov parameters’ values that
cause a detection by sensor , during the th time interval.
Let the binary random variable represent the th sensor
detection at time , where event represents a
successful detection, and event represents a failed
detection. Then, the probability of detection at a time

is the probability that . Based on the
2D-cone representation of (Section 4), the unit vectors that
finitely generate the heading cone and the velocity cone can be
used to define lower and upper bounds for the Markov
parameters that correspond to . Inparticular, from
Remark 4, if and only if and

, where and are defined in
(13) and (14), and and are defined in (21). Thus, given
the PDFs of theMarkov parameters, the probability that is
contained in is

A

Then, the probability mass function (PMF) of the discrete
random variable can be written in terms of (51), as shown
by the following result.

Theorem 5.1. The probability mass function (PMF) of a discrete
random variable that represents the th sensor detection at
time is,

where, denotes any possible value of in the range
D , and is an integral function defined in
terms of the Markov parameters, as shown in (51).

Proof. Given the PDFs of theMarkov parameters, , , and
, and the independence assumptions in Section 2, the

probability of event can be obtained through
marginalization of the joint probability of , , and ,
[22], such that

A

A

A

A

A A

From the definitions of joint and conditional PDFs [22],
the above probabilities can be expressed in terms of the
PDFs of the Markov parameters as follows

A H V

A

Then, from the normalization property, the probability of a
failed detection at time is,

and, thus, the PMF of is given by (52). ◽

Since the integral function is provided solely as a
function of the PDFs of theMarkov parameters during the th
time interval, it holds for all . Then, the PMF of
in (52) provides the probability of detection for sensor , at any
time , as formulated in Problem 2.1. Also, now that
the PMF of is known from (52), it can be used to compute
the expected value of at time ,

D

where denotes the expectation [22].

6 TRACK COVERAGE

In many monitoring and surveillance applications, it may be
relevant to optimize the number of detections obtained by the
sensor network over a time interval . Typically, detec-
tion events are defined in discrete time because the sensor
requires a finite amount of time to process the target infor-
mation and declare a detection. Also, by this approach, the
detection events are countable and, thus, over a finite period
of time, the sensor obtains a finite number of detections, even
if the target is always in its FOV.
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Let denote the time required by a detection event, and
assume is a finite positive constant chosen such that

and is a multiple of , for any .
Then, the time interval can be discretized as follows,

where, . With these assumptions, the two
discrete-time indices, and can be reconciled because

is a positive integer for any , and at
the initial time .

Then, the expected number of detections for a sensor
during is,

where, is defined in (51), and is a known constant. Also,
the track coverage of sensors, as defined in Problem 2.2, can
be determined as follows

A

For some PDFs, the track coverage function in (59)may not
be readily solved analytically. In this case, the track coverage
can be computed numerically, for example using the
MATLAB® int function or the quadl function which uses
recursive adaptive Lobatto quadrature [26]. When track cov-
erage is to be optimized, an approximate closed-form repre-
sentation may be obtained by approximating the integrals in
(59) using Riemann sum. By this approach, the ranges of the
Markov motion, A, H, and V are also discretized using
constant increments , , and , respectively.
Since the PDFs of target heading and speed are smooth, the
granularity of discretization does not affect the accuracy of
the track coverage performance greatly. Then, the discrete
Markov track origin A is indexed by,

where, and . The discrete target head-
ing is indexed by,

where, , and the discrete velocity is in-
dexed by,

where, .

With the above discretization, the track coverage function
(59) can be approximated as follows,

evaluating the PDFs of the Markov parameters at all discrete
values that fall in the range specified by the heading and
velocity cones. It can be seen that and both are functions
of the sensor positions and ranges, because so are the angles

, , , and derived from the heading and velocity
cones in (13), (14), and (21). Now that a track coverage
function has been obtained in closed form it can be optimized
with respect to the sensor placement, as shown in the follow-
ing section.

7 SENSOR PLACEMENT

The track coverage function derived in the previous section
can be used to determine the placement of sensors inA such
that the expected number of target detections is maximized
during a time interval (Problem 2.3). The optimal
sensor placement can be computed using a nonlinear
program (NLP) that optimizes the coverage function (63),
subject to a set of equality and inequality constraints. These
constraints can be used to specify additional requirements to
be satisfied by the sensor deployment. For example, many
surveillance systems require sensors to obtain multiple inde-
pendent detections [12], [27]–[30]. In this case, theNLPmaybe
used to avoid intersections between the sensor FOVs. Also,
the sensor FOVs typically must be contained by the RoI in
order to maximize area coverage [7].

Then, a sensor placement that maximizes , while
satisfying the above requirements, can be obtained by solving
the NLP,

>

>

>

>

>

in , using a sequential quadratic programming (SQP) algo-
rithm [31], [32].

8 SIMULATION RESULTS

In this section, the probability of detection , derived in
closed form in (51), and used to obtain the track coverage
function (59), isfirst validated numerically usingMonte Carlo
simulations. Then, the sensor placement method presented in
the previous section is demonstrated numerically and com-
pared to greedy, grid, and random deployment algorithms.
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The simulations are performed using the Markov motion
model described in Table 1, and are representative of all
simulations conducted with other models and parameters.

The Markov motion model in Table 1 describes the target
motion over a time interval with (s), and

(s), characterized by five maneuvering intervals,
, indexed by , with . At the initial

time (s), the PDF of the initial target position, , is
a two-dimensional multivariate Gaussian PDF,

� �

with a mean vector � and a diagonal covariance
matrix . Where, denotes the matrix
determinant, denotes the matrix inverse, and

denotes an operator that places a row vector on the diagonal
of a zero matrix.

The PDFs of the heading and velocity parameters for every
maneuvering interval aredescribed inTable 1.GaussianPDFs
are denoted by N , where is the mean, and is the
standard deviation. Uniform PDFs are denoted by U ,
where is the range of the randomvariable (also known as
support of the distribution). PDFs modeled by mixtures of
-Gaussian components are denoted by ,
where , , and are the weight, mean, and standard
deviation of the th component, respectively. Then, the PDF
of the heading angle at is,

TABLE 1
Markov Motion Model Probability Density Functions (PDFs)

Fig. 6. PDFs of initial target positions derived from (4).
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where, for all , and [33].
Once the PDFs of the headings andvelocities are specified, the
PDFs of the initial positions are computed from (4). For the
Markovmotionmodel inTable 1, the PDFs of are computed
from and for , and then plotted in Fig. 6.
These results, obtained from (4), were also validated numeri-
cally using Monte Carlo simulations (plots omitted for
brevity).

8.1 Probability of Detection Simulation Results
The probability of detection (51) is validated numerically by
considering sensors at known positions. The detection
probability is first evaluated by integrating (51) over time
usingMATLAB® dblquad and quad functions. Then, the results
areplotted inFig. 7, and compared to thedetectionprobability
obtained from a Monte Carlo (MC) simulation. Monte Carlo
simulations are a computationally intensive but useful
approach for approximating the evolution of a dynamical
systems involving random variables with known PDFs [34].
A statistically significant number of trials or, in this case,
target tracks, denoted by , are drawn by sampling the
PDFs of the Markov parameters described in Table 1. A 3D
Boolean array is used to store detection outcomes,
such that when a target track is sampled, the event

is stored by letting element for any time
at which C during the simulation. For

any time at which C , the event
is stored by letting element .

In the MC simulation, the expected value of at time
is computed by summing the detection events for

the entire target track, and dividing by the total number of
trials, i.e.:

Fig. 7. Probability of detection for sensors computed by the integral
function (51) (blue), and by MC simulation (magenta).

Fig. 8. Optimal, greedy, grid, and random sensor placements for ,
and the target model in Table 1.

TABLE 2
Size and Ranges of Simulated Sensor Networks
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From (56) the expected value of is equal to the proba-
bility of detection . Therefore, (67) can be used to validate
the integral function in (51). The results are plotted for
comparison in Fig. 7, where it can be seen that the MC
simulations validate the probability of detection in (51),
derived using a geometric transversals approach.

8.2 Sensor Placement Optimization Results
The track coverage function , derived in closed form in (63),
represents the expected number of detections during a time
interval , as a function of the sensor placement .Using
the approach described in Section 7, can be optimized to
obtain a sensor placement that maximizes the network’s
ability to track a target based on its Markov motion model
(Problem 2.3). The sensor placement is obtained by solving
the NLP in (64) using an SQP algorithm implemented by the
MATLAB®OptimizationToolbox fmincon function, described
in [35]. The MATLAB® SQP algorithm was found to outper-
form other NLP software packages, such as [36], while also
allowing for an easier implementation. In every case,multiple
random initializations are used to avoid local maxima
by ultimately picking the solution with the highest value
of .

An example of sensor placement obtained from theNLP
solution is shown in Fig. 8 for a network with the ranges
shown in Table 2, for . The target motion model in
Table 1 is then used to simulate the PDF of the target position,
, over time, and to plot it at four instants in time in Fig. 9.

Superimposing a plot of onto the PDFs in Fig. 9, it can be
seen that sensors are placed in regions where the probability
of detection is high throughout the time interval .

The effectiveness of the proposed sensor placement
approach is compared to that of three existing sensor
deployment methods known as greedy algorithm [16], grid
algorithm [17], and randomized algorithm [19]. The greedy

algorithm places the sensors by packing unequal circles into a
2D rectangular container according to the maximum hole
degree rule [16]. Given the same sensor network size and
ranges used in the NLP example, the greedy algorithm pro-
duces the sensor placement plotted in Fig. 8. The grid algo-
rithmuses the approach presented in [17] to place sensors on a
grid that takes into account the sensor ranges and the dimen-
sions of the RoI, as shown in Fig. 8. The randomized algo-
rithm, inspired by the approach presented in [19], places
sensors randomly in the RoI, preventing intersections
between FOVs, or with the RoI boundaries, in order to maxi-
mize area coverage and obtain independent detections, as
shown in Fig. 8.

The performance of the sensor placements obtained by the
four algorithms are compared in Fig. 10, usingnineteen sensor

Fig. 9. PDF of target position at four instants in time, and optimal placement obtained by NLP for sensors.

Fig. 10. Track coverage of sensor placements obtained by NLP, greedy,
grid, and randomized algorithms for the networks in Table 2.
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networks with the characteristics shown in Table 2. For each
sensor placement, the track coverage function , in (59), is
evaluated using MATLAB® dblquad and quad functions. The
results, plotted in Fig. 10, show that the sensor placements
obtained by NLP significantly outperform all others in the
expected number of target track detections for the Markov
model in Table 1.

9 SUMMARY AND CONCLUSIONS

There is considerable precedence in the sensor tracking and
estimation literature for modeling maneuvering targets by
Markov motion models in order to estimate the target state
from multiple, distributed sensor measurements. Although
the transition probability density functions of these Markov
models are routinely outputted by tracking and estimation
algorithms, little work has been done to use them as a
feedback to sensor coordination and control algorithms. Geo-
metric transversals and convex theory have been previously
utilized to derive track coverage functions for deploying and
controlling sensor networks such that their ability to track
targets traversing the RoI at constant speed and heading is
maximized.

This paper extends this theory to maneuvering targets
described by Markov motion models, by analyzing the geo-
metric properties of track detections in a spatio-temporal
Euclidian space. Using this novel approach, the probability
of track detection can be derived in closed-form for a time-
varying problem formulation, inwhich theMarkov transition
probabilities are not necessarily uniform. The concept of
three-dimensional spatio-temporal coverage cone is intro-
duced, along with its two-dimensional representations re-
ferred to as heading andvelocity cones,whichmaybeutilized
to define a Lebesgue measure of track coverage for omnidi-
rectional sensors. The probability of track detection derived
by the geometric transversals approach is validated numeri-
cally through Monte Carlo simulations. Then, a related track
coverage function is utilized to formulate the optimal sensor
deployment problem as an NLP. The numerical results pre-
sented in this paper show that sensor deployments obtained
from theNLP significantly outperformdeployments obtained
by existing greedy, grid, and randomized algorithms.
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