
24 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005

Smooth Function Approximation Using
Neural Networks

Silvia Ferrari, Member, IEEE, and Robert F. Stengel, Fellow, IEEE

Abstract—An algebraic approach for representing multidi-
mensional nonlinear functions by feedforward neural networks
is presented. In this paper, the approach is implemented for the
approximation of smooth batch data containing the function’s
input, output, and possibly, gradient information. The training set
is associated to the network adjustable parameters by nonlinear
weight equations. The cascade structure of these equations reveals
that they can be treated as sets of linear systems. Hence, the
training process and the network approximation properties can
be investigated via linear algebra. Four algorithms are developed
to achieve exact or approximate matching of input–output and/or
gradient-based training sets. Their application to the design of for-
ward and feedback neurocontrollers shows that algebraic training
is characterized by faster execution speeds and better generaliza-
tion properties than contemporary optimization techniques.

Index Terms—Algebraic, function approximation, gradient,
input–output, training.

I. INTRODUCTION

ALGEBRAIC training is a novel approach for approxi-
mating multidimensional nonlinear functions by feedfor-

ward neural networks based on available input, output, and,
possibly, gradient information. The problem of determining
the analytical description for a set of data arises in numerous
sciences and applications, and can be referred to as data mod-
eling or system identification. Neural networks are a convenient
means of representation because they are universal approxima-
tors that can learn data by example [1] or reinforcement [2],
either in batch or sequential mode. They can be easily trained
to map multidimensional nonlinear functions because of their
parallel architecture. Other parametric structures, such as
splines and wavelets, have become standard tools in regression
and signal analysis involving input spaces with up to three di-
mensions [3]–[6]. However, much of univariate approximation
theory does not generalize well to higher dimensional spaces
[7]. For example, the majority of spline-based solutions for
multivariate approximation problems involve tensor product
spaces that are highly dependent on the coordinate system of
choice [8]–[10].

Neural networks can be used effectively for the identification
and control of dynamical systems, mapping the input–output

Manuscript received August 6, 2001; revised October 15, 2003. This work
was supported by the Federal Aviation Administration and the National Aero-
nautics and Space Administration under FAA Grant 95-G-0011.

S. Ferrari is with the Department of Mechanical Engineering and Ma-
terials Science, Duke University, Durham, NC 27708 USA (e-mail: Sfer-
rari@duke.edu).

R. F. Stengel is with the Department of Mechanical and Aerospace Engi-
neering, Princeton University, Princeton, NJ 08544 USA.

Digital Object Identifier 10.1109/TNN.2004.836233

representation of an unknown system and, possibly, its control
law [11], [12]. For example, they have been used in combina-
tion with an estimation-before-modeling paradigm to perform
online identification of aerodynamic coefficients [13]. Deriva-
tive information is included in the training process, producing
smooth and differentiable aerodynamic models that can then be
used to design adaptive nonlinear controllers. In many applica-
tions, detailed knowledge of the underlying principles is avail-
able and can be used to facilitate the modeling of a complex
system. For example, neural networks can be used to combine
a simplified process model (SPM) with online measurements to
model nutrient dynamics in batch reactors for wastewater treat-
ment [14]. The SPM provides a preliminary prediction of the be-
havior of nutrient concentrations. A neural network learns how
to correct the SPM based on environmental conditions and on
concentration measurements. The problem of function approx-
imation also is central to the solution of differential equations.
Hence, neural networks can provide differentiable closed-ana-
lytic-form solutions that have very good generalization prop-
erties and are widely applicable [15]. In this approach, a fixed
function is used to satisfy the boundary conditions, and a neural
network is used to solve the minimization problem subject to
the former constraint.

Typically, training involves the numerical optimization of the
error between the data and the actual network’s performance
with respect to its adjustable parameters or weights. Consid-
erable effort has gone into developing techniques for accel-
erating the convergence of these optimization-based training
algorithms [16]–[18]. Another line of research has focused
on the mathematical investigation of networks’ approximation
properties [19]–[22]. The latter results provide few practical
guidelines for implementing the training algorithms, and they
cannot be used to evaluate the properties of the solutions
obtained by numerical optimization. The algebraic training
approach provides a unifying framework that can be exploited
both to train the networks and to investigate their approxima-
tion properties. Both aspects are simplified by formulating the
nonlinear representation problem in terms of weight equations.
The data are associated to the adjustable parameters by means
of neural network input–output and, possibly, gradient equa-
tions. This translates into a set of nonlinear, transcendental
weight equations that describe both the training requirements
and the network properties. However, the cascade structure of
these equations allows the nonlinearity of the hidden nodes
to be separated from the linear operations in the input and
output layers, such that the weight equations can be treated
as sets of algebraic systems, while maintaining their original
functional form. Hence, the nonlinear training process and

1045-9227/$20.00 © 2005 IEEE

FERRARI AND STENGEL: SMOOTH FUNCTION APPROXIMATION USING NEURAL NETWORKS 25

related approximation properties can be investigated via linear
algebra.

In this paper, smooth multidimensional nonlinear functions
are modeled using an algebraic approach. Depending on the
design objectives, algebraic training can achieve exact or ap-
proximate matching of the data at the training points, with
or without derivative information. Its advantages with respect
to optimization-based techniques are reduced computational
complexity, faster execution speeds, and better generalization
properties. Furthermore, algebraic training can be used to find
a direct correlation between the number of network nodes
needed to model a given data set and the desired accuracy
of representation. For example, it is shown that a set of
control-system gains can be matched exactly by a sigmoidal
network with nodes, and that its weights can be determined by
solving algebraic equations in one step. Four algebraic training
algorithms are developed and demonstrated by training a for-
ward neural network that models the set of equilibria (or trim
map) of a transport aircraft and a feedback neural network
that models a nonlinear control system (implemented in [23]
and [24]).

Algorithms that determine exact solutions (presented in Sec-
tion IV-A and D) are valuable for incorporating precise knowl-
edge of a system in the neural networks that represent it. In many
applications (e.g., [13]–[15], [23]), this information is available
a priori and can be complemented by posterior data. In such
cases, the objective is not to spare the number of nodes, but
rather to produce a network with sufficient degrees of freedom
while retaining good generalization properties, as accomplished
in the examples presented in Section V-A and C. In other appli-
cations (e.g., [25]), the objective is to synthesize a large data
set by a parsimonious network. Then, the approximate-solution
algorithm presented in Section IV-C can be used, as shown in
Section V-B. In this paper, the algebraic approach is applied
to the batch training of feedforward sigmoidal networks for the
modeling of noise-free data. Work in progress and the prelim-
inary results in [26] and [27] show that the approach also has
value in analyzing other architectures and in training networks
online (i.e., in sequential mode).

II. DEVELOPMENT OF NEURAL NETWORK WEIGHT EQUATIONS

The set of nonlinear weight equations that relates the neural
network’s adjustable parameters to the data is obtained by im-
posing the training requirements on the network’s output and
gradient equations. Algebraic training is based on the key ob-
servation that if all inputs to the sigmoidal functions are known,
then the weight equations become algebraic and, often, linear.
These inputs are referred to as input-to-node values, and they
determine the saturation level of each sigmoid at a given data
point. The particular structure of the weight equations allows
the designer to analyze and train a nonlinear neural network by
means of linear algebra, partly by controlling the distribution
and saturation level of the active nodes which determine the net-
work generalization properties.

The objective is to approximate a smooth scalar function of
inputs using a feedforward sigmoidal network of
the type shown in Fig. 1. The approach also can be extended

to include vector-output functions. Typically, the function to
be approximated is not known analytically, but a precise set of
input–output samples can be generated such
that , for all values of . This set of samples is re-
ferred to as training set. For example, a high-dimensional partial
differential equation solver could be used to compute a smooth
fluid flow, and it might be desired to represent the flow field by
a neural network. Then, the training points for the neural net-
work could be derived from the flow solution. The use of deriva-
tive information during training can improve upon the network’s
generalization properties [13]. Therefore, if the partial deriva-
tives of the function are known with respect to of its
inputs

(1)

they also can be incorporated in the training set:
.

The scalar output of the network is computed as a nonlinear
transformation of the weighted sum of the input and a bias ,
plus an output bias

(2)

is composed of sigmoid functions, such as
, evaluated at all input-to-node variables with

(3)

and

(4)

where and contain the input and output weights, respec-
tively. Together with and they constitute the adjustable
parameters of the network.

The order of differentiability of (2) is the same as that of the
activation function, . Given that the chosen sigmoid func-
tions are infinitely differentiable, the derivative of the network
output with respect to its inputs is

(5)

where denotes the derivative of the sigmoid function with
respect to its scalar input. denotes the element in the th row
and the th column of the matrix , and it represents the inter-
connection weight between the th input and the th node of the
network. Equations (2) and (5) constitute the network’s output
and gradient equations, respectively. The training requirements
are obtained from the training set, as explained in the following
paragraphs.

The computational neural network matches the input–output
training set , exactly if, given the input , it
produces as the output

(6)

26 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005

Fig. 1. Sample scalar-output network with q-inputs and s-nodes in the hidden
layer.

This is equivalent to stating that the neural adjustable parameters
must satisfy the following nonlinear equations:

(7)

which are referred to as output weight equations. When all the
known output elements from the training set are grouped in a
vector

(8)

Equation (7) can be written using matrix notation

(9)

where is an s-dimensional vector composed of the scalar
output bias . is a matrix of sigmoid functions evaluated at
input-to-node values , each representing the magnitude of
the input-to-node variable to the th node for the training
pair

...
...

. . .
...

(10)

The nonlinearity of the output weight equations arises purely
from these sigmoid functions.

Exact matching of the function’s derivatives (1) is achieved
when the neural network’s gradient evaluated at the input
equals , i.e.,

(11)

Hence, the adjustable parameters must satisfy the following gra-
dient weight equations

(12)

that are obtained by imposing the requirements in (11) on (5).
The symbol “ ” denotes element-wise vector multiplication.

represents the first columns of containing the weights
associated with inputs through . Input-to-node weight

equations are obtained from the arguments of the nonlinear
sigmoidal functions in (7) and (12)

(13)

where is a vector-valued function whose elements consist
of the function evaluated component-wise at each element
of its vector argument

(14)

Equation (12) can be written as

(15)

with the matrix

(16)

explicitly containing only sigmoid functions and output
weights.

Since the weight equations relate the neural parameters to the
training set, they can be used to investigate the approximation
properties of the neural network and to compute its parameters.
If the derivative information is not available, the output
weight equations are considered and (15) is ignored. Conversely,
if the output information is not available, (9) is ignored.
If all input-to-node values are known, the nonlinear
transcendental weight equations (9) and (15) are both algebraic
and linear. Based on this assumption, the sigmoidal matrix
in (10) is known, and the output weight (9) can be solved
for the output weights . Then, all of the matrices are
known, and the gradient weight (15) can be solved for the input
weights . The following section presents four algebraic
algorithms that determine the input-to-node values and, then,
compute the weights from the linear systems in (9) and (15).
Their effectiveness is demonstrated through the examples in
Section V.

III. ALGEBRAIC TRAINING ALGORITHMS

A. Exact Matching of Function Input–Output Data

Assume that the training set takes the form .
Equation (9) admits a unique solution if and only if
rank rank , where rank represents the
rank of the matrix (e.g., see [28]). Under the assumption of
known input-to-node values, is a known matrix. When
the number of nodes is chosen equal to the number of training
pairs is square. If it also is nonsingular and the training
data are consistent, (9) is a full-rank linear system for which
a unique solution always exists. The input parameters affect
the solution of the output weight equations only through the
input-to-node values determining the nature of . Thus, the
required weights are not unique. They need be chosen only to
assure that is full rank. With suitable , the fit is determined
by specifying and alone.

FERRARI AND STENGEL: SMOOTH FUNCTION APPROXIMATION USING NEURAL NETWORKS 27

A strategy for producing a well-conditioned consists of
generating the input weights according to the following rule:

(17)

where is chosen from a normal distribution with zero mean
and unit variance that is obtained using a random number gen-
erator. is a user-defined scalar that can be adjusted to obtain
input-to-node values that do not saturate the sigmoids, as ex-
plained further below. The input bias is computed to center
each sigmoid at one of the training pairs from (13),
setting when

diag (18)

is a matrix composed of all the input vectors in the training
set

(19)

The “diag” operator extracts the diagonal of its argument (a
square matrix) and reshapes it into a column vector. Equation
(18) distributes the sigmoids across the input space, as also is
suggested by the Nguyen–Widrow initialization algorithm [29].
Finally, the linear system in (9) is solved for by inverting

(20)

In this case, the output bias is an extra variable; thus, the vector
can be set equal to zero.
The input elements from the training set can be normal-

ized. Alternatively, the factor alone can be used to scale the
distribution of the input-to-node values, establishing their order
of magnitude. While of the sigmoids in (10) are centered, the
remaining ones come close to being saturated for inputs whose
absolute value is greater than 5. Thus (for the chosen sigmoid
functions), input-to-node values of order allow a good
fraction of the sigmoids to be highly saturated, contributing to
a smooth approximating function and producing a nonsingular

. If (17) has produced an ill-conditioned , this computation
simply is repeated before proceeding to solve (9) (typically, one
computation suffices). This algorithm is illustrated by the solid
line elements of the flowchart in Fig. 2, and the respective code
implementation is shown in [24]. The dashed lines represent
modifications to incorporate derivative information, as derived
in the next section. The technique is applied in Section V-A to
model the longitudinal trim map of an aircraft.

B. Approximate Matching of Gradient Data in Algebraic
Training

Exact matching of both input–output and gradient infor-
mation is achieved when the output and
gradient weight (9) and (15) are solved simultaneously for the
neural parameters. It is possible to solve both equations exactly
when the dimension equals , or when the training
set has the special form to be discussed in Section IV-D. In

Fig. 2. Exact input–output-based algebraic algorithm with added p-steps for
incorporating gradient information.

general, a suitable way to incorporate the gradient equations
in the training process is to use (15) to obtain a more stringent
criterion of formation for the input weights. The approach of
Section IV-A has proven that there exists more than one -node
network capable of fitting input–output information exactly.
Using derivative information during training is one approach to
choosing the solution that has the best generalization properties
among these networks.

A first estimate of the output weights and of the
input-to-node values to be used in (15) can be obtained
from the solution of the output equations (9) based on the
randomized (17). This solution already fits the input–output
training data. The input weights and the remaining parameters
can be refined to more closely match the known gradients
using a -step node-by-node update algorithm. The underlying
concept is that the input bias and the input-to-node values
associated with the th node

(21)

can be computed solely from the input weights associated with
it

(22)

At each step, the th sigmoid is centered at the th training
pair through the input bias , i.e., , when . The th

28 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005

gradient equations are solved for the input weights associated
with the th node, i.e., from (15)

...

and (23)

The remaining variables are obtained from the initial estimate
of the weights. The th input bias is computed individually

(24)

and of the input-to-node values are updated

(25)

At the end of each step, (9) is solved for a new value of , based
on the latest input-to-node values.

The gradient equations are solved within a user-specified
gradient tolerance. At each iteration, the error enters through

and through the input weights to be adjusted in later steps
with . The basic idea is that the th node

input weights mainly contribute to the th partial derivatives
, because the th sigmoid is centered at and can

be kept bounded for a well-conditioned . As other sigmoids
approach saturation, their slopes approach zero, making the
error associated with smaller. If the gradient with respect
to some inputs is unknown, the corresponding input weights
can be treated similarly to the input bias. In the limit of

“free” inputs, all weight equations can be solved exactly
for the network’s parameters. The flowchart in Fig. 2 shows
how the input–output-based algorithm can be modified by the

-operations in the dashed box (a code implementation also
is shown in [24]). The gradient tolerance can be checked at
every step so that the algorithm can terminate as soon as the
desired tolerance is met, even if . The effectiveness of
this algorithm is demonstrated in Section V-A by training a
neural network to approximate a longitudinal aircraft trim map
based on gradient and input–output information.

C. Approximate Matching of Function Input–Output Data

The algebraic approach can be used to obtain an approxi-
mate parsimonious network when the number of training pairs

is large. Section IV-A showed how exact matching of an
input–output training set can be achieved
by choosing a number of nodes that equals . An exact
solution also could be obtained using fewer nodes than there
are training pairs, i.e., , provided the rank condition
rank rank is satisfied. These results reflect
intrinsic properties of neural networks that are independent
of the algebraic approach, and they provide guidelines for the
training procedure. For example, when the linear system in (9)
is not square , an inverse relationship between and
can be defined using the generalized inverse or pseudoinverse
matrix [24]. Typically, (9) will be overdetermined, with more
equations than there are unknowns, and its solution will be
given by

(26)

where constitutes the left pseudoinverse, and is set
equal to zero for simplicity. If the equations are consistent,
(26) provides the exact value for . If they are not consistent,
rank rank , the system in (9) has no solution. In
the latter case, (26) provides the estimate that minimizes the
mean-square error (MSE) in the estimate of and can be
used to obtain an approximate solution for the output weight
equations.

Whenever a neural network is trained by a conventional algo-
rithm that does not achieve exact matching, such as backprop-
agation [30], the corresponding weight equations fall into the
approximate case above. This is because, given a training set,
corresponding weight equations can be written for any network
whose parameters constitute either an exact or an approximate
solution to these equations. Letting denote the best approxi-
mation to obtained from the final neural parameters, the fol-
lowing holds:

(27)

Regardless of how the actual network output weight vector
has been determined, it satisfies (27) along with the actual

value of . Equation (27) minimizes the error , which is
the same error minimized by conventional optimization-based
training algorithms [30]. This observation completes the picture
by showing how the algebraic approach can deal with the case
of , typically found in the neural network literature. More
importantly, it can be exploited to develop approximate tech-
niques of solution that are computationally more efficient than
the conventional iterative methods, such as the one outlined
below and implemented in Section V-B.

Based on these ideas, an algebraic technique that superim-
poses many networks into one is developed. Suppose a neural
network is needed to approximate a large training set [i.e.,

] using a parsimonious number of nodes, . Conven-
tional methods, such as Levenberg–Marquardt (LM) and re-
silient backpropagation (RPROP) [31], [32], can successfully
train networks with , minimizing the error , but
they quickly run out of memory if a large set is used at once in
what is referred to as batch training. If the training set is divided
into smaller subsets, training becomes even more challenging,
as the neural network is likely to forget previously learned sub-
sets while it is being trained with new ones. Furthermore, these
difficulties are exacerbated by the problem of finding the appro-
priate number of nodes. On the other hand, when a small subset
is used, batch training can be very effective. Many of the con-
ventional algorithms converge rapidly, and the network general-
ization abilities can be optimized by finding the “best” number
of nodes through a trial-and-error procedure.

The technique described here algebraically superimposes net-
works that individually map the nonlinear function
over portions of its input space into one network that models
over its entire input space. The full training set ,
covering the full range of the input space, is divided into
subsets

FERRARI AND STENGEL: SMOOTH FUNCTION APPROXIMATION USING NEURAL NETWORKS 29

where . Each subset is used to train a sigmoidal neural
network of the type shown in Fig. 1, whose parameters are in-
dexed by , where . That is, each -node network,
or subnetwork, models the th subset
using the weights , and , and .
Then, as suggested by the schematic in Fig. 3, the networks
are superimposed to form a -node network that models the full
training set using the weights , and , and

. Fig. 3 shows the equivalence between the group of subnet-
works and the network obtained by their superposition. Here,
the summation symbols are omitted for simplicity.

The output weight equations of each subnetwork fall into the
approximate case described above. Therefore, the th neural
network approximates the vector
by the estimate

(28)

where is the actual output weight vector and rank
rank . The input weights of the networks are
preserved in the full input weight matrix

... (29)

and input bias vector

... (30)

Then, for the full network the matrix of input-to-node values
defined as , with the element in the th column
and th row, contains the input-to-node value matrices for the

sub-networks along its main diagonal

...
. . .

... (31)

From (13), it can be easily shown that the off-diagonal terms,
such as and , are columnwise linearly dependent on
the elements in , and , so

. Also, it is found that in virtually all
cases examined rank rank . Although a rigorous proof
cannot be provided because of the nonlinearity of the sigmoid
function, typically rank .

Finally, the output weight equations are used to compute the
output weights that approximate the full training set

(32)

Because was constructed to be of rank , the rank of
is or, at most, , bringing about a zero

or small error during the superposition. More importantly, be-
cause the error does not increase with , several subnetworks
can be algebraically superimposed to model one large training
set using a parsimonious number of nodes. In practice, the
vector in (32) can be substituted by the vector

Fig. 3. Superposition of ms -node neural networks into one s-node network
(summation symbols are omitted for simplicity).

that is directly obtained from the training set and,
effectively, contains the output values to be approximated.

The method is applied in Section V-B, where a neural
network is trained to approximate the full aircraft trim map by
superposition of several subnetworks. Generally speaking, the
key to developing algebraic training techniques is to construct a
matrix , through , that will display the desired characteristics.
In the case of approximate input–output-based solutions,
must be of rank whereas, the number of nodes, is kept
small to produce a parsimonious network.

D. Exact Matching of Function Gradient Data

Gradient-based training sets in the form
are a special case for

which the weight equations always exhibit an exact solution.
These sets are referred to as gradient-based because knowledge
of the function to be approximated mainly is provided by its
gradients . At every training point, is known for of the
neural network inputs, which are denoted by . The remaining

inputs are denoted by . Input–output information also
is available as and , for any . Hence,
the output and gradient weight equations must be solved
simultaneously. For convenience, the input-weight matrix is
partitioned into weights corresponding to , and weights
corresponding to

(33)

Under the above conditions, the output weight equations (7)
take the form

(34)

and are independent of the input weights because equals
zero in all training triads. The gradient weight equations (12)
depend on the input weights only implicitly

(35)

where (13) simplifies to

(36)

Equations (34)–(36) can be treated as three linear systems by
assuming that all input-to-node values [in (36)] are known.

30 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005

The first linear system is obtained from (36), by reorganizing all
values into the following array:

... (37)

When becomes a known -dimensional column
vector. Then, the linear equations in (36) can be written in
matrix notation as

(38)

is a matrix that is computed from all -input
vectors in the training set. Each of these vectors contains
elements, and the superscript indicates at which training pair
each element has been evaluated

...
...

... (39)

The only unknown parameters in (38) are the -input weights
and the input bias. These are conveniently contained in the
vector that corresponds to the following rearrangement:

Vec .
Under the assumption of known , the system in (34) be-

comes linear

(40)

and it always can be solved for , provided and is
nonsingular. Subsequently, can be treated as a constant, and
(35) also becomes linear

(41)

In this system of equations, the unknowns consist of the -input
weights that, for convenience, have been reorganized in the
vector Vec . “Vec” indicates Vec Operation,
which consists of columnwise reorganization of matrix ele-
ments into a vector [33]. The known gradients in the training
set are assembled in the vector

... (42)

denotes a known sparse matrix composed of block-
diagonal sub-matrices of dimensions

. . .

...

. . .

... (43)

The solution order of the above linear equations is key. The
input-to-node values determine the nature of and ; repetitive

values in will render their determinants zero. The following
algorithm determines an effective distribution for the elements
in so that the weight equations can be solved for the neural
parameters in one step. Equation (38) is the first to be solved,
since the input-to-node values are needed in the linear output
and gradient weight [(40) and (41)]. and are determined
from the training set, based on (39) and (42), choosing .
A strategy that produces a well-conditioned , with probability
one, consists of generating according to the rule

if
if

(44)

consistently with Section IV-A. Then, is computed from
(38) using the left pseudoinverse

(45)

is the best approximation to the solution, as this overdeter-
mined system is not likely to have a solution. When this value
for is substituted back in (38), an estimate to the chosen
values (44) is obtained for

(46)

The elements of are used as input-to-node values in the output
and gradient weight equations.

is computed on the basis of (40); therefore, the sigmoids
are very nearly centered. While it is desirable for one sigmoid
to be centered for a given input, , the same sigmoid should be
close to saturation for any other known input in order to prevent
ill-conditioning of . Considering that the sigmoids come close
to being saturated for an input whose absolute value is greater
than 5, it is found desirable for the input-to-node values in to
have variance of about 10. A factor can be obtained for this
purpose from the absolute value of the largest element in ; then
the final values for and can be obtained by multiplying
both sides of (46) by

(47)

Subsequently, the matrix can be computed from , and the
system in (40) can be solved for . With the knowledge of and

, the matrix can be formed as stated in (43), and the system
(41) can be solved for . The matrices and in (40) and
(41) are found to be consistently well-conditioned, rendering
the solution of these linear systems straight-forward as well as
highly accurate. Thus, both output and gradient weight equa-
tions, originally in the form of (34) and (35), are solved exactly
for the network’s parameters in a noniterative fashion. This al-
gorithm is sketched in Fig. 4 and applied in Section V-C to train
a gain-scheduled neural network controller.

E. Example: Neural Network Modeling of the Sine Function

A simple example is used to illustrate the algebraic solution
approach. A sigmoidal neural network is trained to approximate
the sine function over the domain . The
training set is comprised of the gradient and output information
shown in Table I and takes the form , with

. As explained in the previous sections, the number

FERRARI AND STENGEL: SMOOTH FUNCTION APPROXIMATION USING NEURAL NETWORKS 31

Fig. 4. Exact gradient-based algebraic algorithm.

of nodes and the values of the parameters of a sigmoidal neural
network (Fig. 1) that matches this data exactly can be deter-
mined from the output weight (7)

(48)

(49)

(50)

the gradient weight (12)

(51)

(52)

(53)

and the input-to-node weight (13)

(54)

(55)

(56)

The algebraic training approach computes a solution of the
nonlinear weight equations by solving the linear systems ob-
tained by separating the nonlinear sigmoid functions from their
arguments (or input-to-node values). In this case, it is shown
that the data (Table I) is matched exactly by a network with
two nodes, i.e., with

, and . Although there are 12 weights

TABLE I
DATA SET USED FOR ALGEBRAIC TRAINING OF A NEURAL NETWORK THAT

MODELS THE SINE FUNCTION BETWEEN 0 AND � (IN RADIANS)

(48)–(56) and only seven unknown parameters (W, d, v, and),
the input-to-node values (and) can be selected to make
these overdetermined equations consistent, such that an exact
solution for the parameters will exist. Suppose the input-to-node
values and are chosen such that

(57)

Then, if the following conditions are satisfied:

(58)

(59)

where (48) becomes equivalent to (50), and (51) becomes
equivalent to (53). From (54) and (56), it follows that the input
weights must also satisfy the relationship:

(60)

and, thus, from (55)

(61)

With the assumptions in (58)–(59), (61) implies that the gra-
dient (52) always holds. Therefore, the parameters , and

can be determined from the remaining output and gradient
equations (48), (49), and (51), which simplify to

(62)

(63)

(64)

when subject to the above assumptions. Since the input bias
and the input-to-node values and all are specified in terms
of [as shown in (54), (57), and (61)], once is chosen all
network parameters can be determined by solving linear sys-
tems of equations. In this example, is chosen to make the
above weight equations consistent and to meet the assumptions
in (57) and (60)–(61). It can be easily shown that this corre-
sponds to computing the elements of (and) from the
equation

(65)

which is obtained by writing (62)–(64) solely in terms of ,
subject to (60)–(61).

32 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005

Equation (65) is a nonlinear transcendental equation with two
unknowns. However, by performing an appropriate change of
variables it can be rewritten as two simultaneous algebraic equa-
tions with two unknowns (and). The first algebraic equa-
tion is quadratic with respect to

(66)

and is obtained from (65) through the change of variables shown
in the Appendix. The constants and (introduced in the Ap-
pendix) are computed from a user-specified parameter , which
is defined by the second algebraic equation: . If

is chosen such that is real and positive, can be computed
from (66) specifying both and . Subsequently, all network
weights are determined from the remaining algebraic equations
derived above. The flowchart in Fig. 5 summarizes the sequence
of solutions.

The output of a two-node sigmoidal network trained by this
algebraic algorithm (Fig. 5) is shown in Fig. 6, for . In
this graph, the output of the network, shown in a dotted line, is
superimposed to the sine function (solid line) for comparison.
The network is trained in one step, using a three-pair training
set (Table I), which is matched exactly, and it achieves a MSE of

over a 50-point validation set. Similar results are ob-
tained with other values of . An equivalent performance can
be obtained by training the two-node network with the LM algo-
rithm [39] (e.g., the MATLAB LM training function), using 11
input–output training pairs and approximately 100 iterations (or
epochs). The following sections demonstrate how the algebraic
training approach can be used for approximating multidimen-
sional functions by neural networks.

IV. NEURAL NETWORK CONTROL OF AIRCRAFT BY AN

ALGEBRAIC TRAINING APPROACH

The algebraic algorithms derived in Section IV are demon-
strated by training nonlinear neural networks that model for-
ward and feedback controllers [23]. Control functions must be
smooth, differentiable mappings of multidimensional nonlinear
data. The dynamics of the aircraft to be controlled can be mod-
eled by a nonlinear differential equation

(67)

where the control function takes the general form

(68)

The command input can be viewed as some desirable com-
bination of state and control elements. Plant motions and distur-
bances are sensed in the output vector

(69)

and is a vector of plant and observation parameters. The full
state vector of the aircraft comprises
airspeed , path angle , pitch rate , pitch angle , yaw rate ,
sideslip angle , roll rate , and bank angle . The independent
controls being generated are throttle , elevator , aileron

, and rudder , i.e., .

Fig. 5. Algebraic training algorithm for modeling the sine function by a
two-node neural network.

Fig. 6. Comparison between the output of the algebraically trained, two-node
neural network (dotted line) and the sine function (solid line).

As shown in [23], the values of at various equilibrium
conditions are specified by the “trim” settings of the controls,
and their gradients with respect to these flight conditions can be
defined by the control gains of satisfactory linear controllers.
Thus, both the functions and their derivatives are well-defined
at an arbitrary number of operating points. The trim values and
gradients can be specified as functions of velocity and altitude,
which form a scheduling vector. The nonlinear controller is
comprised of neural networks that express the trim control

FERRARI AND STENGEL: SMOOTH FUNCTION APPROXIMATION USING NEURAL NETWORKS 33

settings and that provide feedback corrections that augment
the aircraft stability and correct errors from the desired flight
conditions .

A. Modeling of Longitudinal Trim Control Settings

In this section, the algorithms presented in Section IV-A
and B are implemented to train a forward neural network that
models the longitudinal trim map of an aircraft. The trim map
comprises the equilibrium state of the controlled aircraft and
the corresponding control settings [34]. The forward neural
network provides the control commands required for equilib-
rium and is trained by matching input–output data exactly and
gradient data approximately within a specified tolerance. With
no disturbances or errors in the aircraft dynamic model, the
control could be provided solely by the forward network.

Trim or equilibrium control settings are defined for a given
command input

(70)

such that

(71)

with computed from and from the flight conditions .
The aircraft trim map is obtained by solving the steady-state
equation (31) numerically times over the aircraft’s operational
range OR

OR

(72)

Local gradients of this hypersurface defined at each set point
can be expressed as

(73)

Here, a reduced order longitudinal-axis model is considered
to illustrate the application of the algorithms derived in Sec-
tion IV-A and B to problems that require precise matching of
a relatively small set of data, i.e., . In Section V-B,
the full aircraft model is used to illustrate the application of
the training algorithm in Section IV-C for the synthesis of a
larger data set , i.e., the full trim map. The longi-
tudinal aircraft state vector contains velocity, path angle, pitch
rate, and pitch angle: . The longitudinal con-
trols are throttle position and elevator: . The
training of the longitudinal forward neural network is based on
the trim data , and that are con-
sistent with the definitions of and . The network’s vector
output is given by the combination of two scalar, simply
connected networks with velocity and path angle commands in

(74)

Fig. 7. Trim-map control surfaces, the asterisks symbolize corresponding
training samples.

Every row of provides the network gradient (1) for a control
element. Fig. 7 shows the trim map being approximated; the
intersections of the solid lines on the surfaces delineate the input
space grid being plotted (the software interpolates between these
points). The training set contains the trim data corresponding to
45 operating points describing different velocities and altitudes
(also plotted in Fig. 7). Therefore, exact matching of the
input–output data is obtained by a network with 45 nodes.

The parameters of and are determined from the
corresponding weight equations(9) and (15) using the algorithm
in Fig. 2. Initially, the parameters of obtained from the
output equations produce a lumpy surface (Fig. 8), and the gra-
dient tolerances are not immediately satisfied. The weights are
further refined using the -step gradient algorithm, finally pro-
ducing the output surface in Fig. 9(a). For , the parameters
that satisfy the desired tolerances [Fig. 9(b)] are obtained from
the output weight equations alone (9) in only one step. The final
neural output surfaces are plotted over a fine-grid input space in
Fig. 9 to demonstrate the networks’ interpolation abilities. The
training time is a small fraction of a second on a contemporary
desktop computer.

For comparison, a 45-node neural network is trained to ap-
proximate the same elevator input–output trim data [Fig. 7(b)]
by means of the MATLAB 5.3 LM and RPROP training func-
tions. Table II shows that the performance of the algebraic algo-
rithm is superior to that of the two conventional algorithms in all
respects. The output surface of the neural network trained by the
LM algorithm is plotted in Fig. 10. The LM algorithm
(which, in this case, outperforms RPROP) produces a network
that has poor generalization properties when compared to the
algebraically-trained network [Fig. 9(b)].

34 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005

Fig. 8. Trim-throttle function approximation obtained from output weight
equations alone.

Fig. 9. Final trim-control function approximation where (a) is obtained from
output and gradient weight equations and (b) is obtained from output weight
equations.

With or without the use of derivative information, the alge-
braic approach minimizes data overfitting even when the net-
work size is large because it addresses the input-to-node values
and, hence, the level of saturation of the sigmoids, directly.
In fact, using many nodes to approximate a smooth and rela-
tively-flat surface [such as Fig. 9(b)] proves more challenging
than approximating a highly nonlinear surface, because of the
extra degrees of freedom.

Fig. 10. Trim-elevator function approximation obtained by the LM algorithm.

B. Modeling of Coupled Longitudinal and Lateral Trim
Control Settings

The previous section demonstrates how the algorithms in Sec-
tion IV-A and B can be used to model a training set with smooth
data that needs to be matched closely. In some applications, the
number of training points is much larger, and a parsimonious
network that synthesizes the data with fewer nodes is preferred.
The approach presented in Section IV-C can be used to train
such a network with lesser computational complexity than con-
ventional optimization algorithms. As an example, the full air-
craft trim map (72) is modeled by a forward neural network

(Fig. 11) that computes both longitudinal and lateral trim
control settings , given the command
input and the desired altitude

(75)

To every value of , there corresponds a unique pair of pitch
angle and yaw rate that, together with , specify the
steady maneuver (71) commanded by . Therefore, the func-
tional relationship between these two parameters and the com-
mand input also is modeled by the forward neural network. A
sampled description of the full trim map (72) is obtained by
solving (71) numerically throughout the full operating range OR

using a least-squares algorithm [24]. For the aircraft, OR is de-
fined as the set of all possible steady maneuvers involving some
combination of airspeed, altitude, path angle, bank angle, and
sideslip, i.e., OR . The aircraft physical charac-
teristics and specifications suggest the following limits for these
state variables:

OR

m s m s
m m

(76)

The actual boundaries of the multidimensional envelope OR are
found while solving (71), sampling the ranges in (76) with the
following intervals: m/s, m, ,

, and [24].

FERRARI AND STENGEL: SMOOTH FUNCTION APPROXIMATION USING NEURAL NETWORKS 35

TABLE II
PERFORMANCE COMPARISON OF TRAINING ALGORITHMS FOR THE APPROXIMATION OF A SCALAR FUNCTION BY A 45-NODE SIGMOIDAL NEURAL NETWORK

Fig. 11. Forward neural network architecture (summation symbols are omitted
for simplicity).

A representative training set ,
is obtained from the following combinations:

in degress (77)

and randomly choosing values of and in increments of
m/s, m, and ,

respectively. Two additional sets of data are used for validation
purposes: one with 39764 operating points and one with 2629
operating points. They are obtained from the sampled descrip-
tion of by considering the combinations excluded in
(77) and randomly selected values of , and . In this case,
gradient information is omitted for simplicity. Because there
are 2696 training pairs, it is convenient to seek an approximate
matching of the data, synthesizing the input–output information
by a parsimonious network with .

Conventional optimization-based techniques can success-
fully train small networks, with , provided ,
but they quickly run out of memory if a large set is used at
once (i.e., by batch training). A common approach is to divide
the set into many subsets that are used to train the network
sequentially. This procedure can be particularly arduous for
conventional algorithms, as the network is likely to forget

previously learned subsets while it is being trained with new
ones. Instead, LM batch training is implemented here to train

subnetworks that are then combined into a single network in
one step by the algebraic algorithm of Section IV-C. Twenty
training subsets are obtained from the twenty combina-
tions in (77). Each subset
contains the trim data corresponding to approximately 135
equilibria and can be modeled by a network of the type shown
in Fig. 11 with parameters , and , where

. It is easily found that each subset can be ap-
proximated by a ten-node network with a MSE of and
excellent generalization properties. The MATLAB LM training
function is implemented for this purpose.

Subsequently, according to the algorithm in Section IV-C, a
network that models the full training set (the collection of all
twenty subsets) can be obtained algebraically from the former
subnetworks. For this full forward neural network

, since for and , and the input weights
and are obtained from (29)–(30). The output weights are

computed from the vector-output equivalent of (32)

(78)

similarly to the process illustrated in Fig. 3. The matrix is
computed from (10), based on the values in (31), and contains
all of the output training data

(79)

The generalization capabilities of the full network are tested
throughout OR by computing the MSE between the trim set-
tings at the validation points to those computed by and by
plotting the projection of the neural mapping onto three-dimen-
sional (3-D) space. The MSE is found to be approximately

rad or rad/s for both of the validation sets described above.
A representative surface approximated by is plotted in
Fig. 12 and compared to trim data from the first validation set
(Fig. 13) by holding , and constant and computing the
output over a fine-grid - input space. These results are
typical among all graphical comparisons performed elsewhere
in OR. Hence, it is verified that good generalization properties

36 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005

Fig. 12. Trim control surfaces as modeled by the forward neural network over a fV ;H g-input space, with remaining inputs fixed at (; � ; �) =
(3 ; 14 ; 4).

Fig. 13. Actual trim control surfaces plotted over a fV ;H g-input space, with remaining inputs fixed at (; � ; �) = (3 ; 14 ; 4).

are obtained consistently across the full operating domain, indi-
cating that overfitting does not occur.

C. Nonlinear Feedback Neural Networks

Feedback neural networks that interpolate linear control ma-
trices obtained at selected operating points have been proposed
in several applications (e.g., [35] and [36]). The algorithm
derived in Section IV-D can be used to obtain these nonlinear
neural networks algebraically, by solving systems of linear
equations. Here, the method is demonstrated with a feedback
neural network that controls the longitudinal aircraft dynamics
throughout the steady-level flight envelope, as in [23].

Control laws that satisfy desired engineering criteria can
be designed for chosen operating points to provide a set of
locally-optimal gains . Typically, a controller is obtained
by interpolating these local designs to intermediate operating
regions by means of the scheduling vector , introduced above,
through a procedure referred to as gain scheduling. Here, a
nonlinear feedback controller is devised by using the local

gain matrices to train a neural network that, at any given time,
computes the deviation from the nominal controller given the
state deviation and the flight condition.

The training set is found by inspection, from the control law.
For every th operating point the neural network gradient is
given by the control gains at that point

(80)

and are the optimal gain matrix and the scheduling vector
evaluated at the th operating condition; every row of pro-
vides the gradient (1) for a control element. Also, the following
input–output condition always holds:

(81)

producing a training set of the form considered in Section IV-D.
The longitudinal feedback neural network is composed

FERRARI AND STENGEL: SMOOTH FUNCTION APPROXIMATION USING NEURAL NETWORKS 37

TABLE III
COMPARISON OF NEURAL NETWORK GRADIENTS WITH ACTUAL FEEDBACK GAINS AT THREE VALIDATION POINTS

of two scalar networks with the architecture shown in Fig. 1,
one for each control element

(82)

The neural networks’ size and parameters are determined from
the exact gradient-based solution (Section IV-D) in one step.

Suppose the feedback gain matrices have been designed at
34 operating points also referred to as design points. Then, two
34-node sigmoidal networks can match these gains exactly and
generalize them throughout the steady-level flight envelope
[23]. The network weights , and are computed from
(38), (40), and (41), according to the algorithm in Fig. 4. The
algebraic training algorithm executes in about 1 s for each
network. Because the weight equations are solved exactly,
the error at the 34 initialization points (Fig. 7) is identically
zero. The generalization properties are tested by producing
a validation set of feedback gains at nontraining points and
comparing them to the network gradients computed from the
trained weights, based on (5). The validation set is obtained by
designing the gain matrices at 290 operating points within the
flight envelope. The norm of the error between this gradient
and the corresponding gains equals 0.045 on average and has
a maximum value of 0.14. A comparison of network gradients

and actual gains is shown in Table III
for sample interpolation points chosen from the validation set.
This accuracy translates into excellent control performance
everywhere in the flight envelope, as shown in [23] and [24].
While gradient-based training constitutes an added degree of
complexity for conventional optimization-based algorithms, it
is handled just as easily as input–output-based training by the
algebraic approach.

V. CONCLUSION

An algebraic training approach that affords a great deal of
insight into neural approximation properties and applications
is developed. The underlying principles are illustrated for the
batch training of a classical feedforward sigmoid architecture.
The techniques developed in this paper match input–output
and gradient information approximately or exactly by neural
networks. The adjustable parameters or weights are determined
by solving linear systems of equations. Four algebraic algo-
rithms are derived based on the exact or approximate solution of
input–output and gradient weight equations. Their effectiveness
is demonstrated by training forward neural networks, which

synthesize a transport aircraft’s trim map, and feedback neural
networks, which produce a gain-scheduled control design. All
implementations show that algebraic neural network training is
fast and straightforward for virtually any noise-free nonlinear
function approximation, and it preserves the networks’ gener-
alization and interpolation capabilities.

APPENDIX

In (65), let , where is a user-specified
constant. Then, can be written in terms of , as

, which, when substituted back in (65), leads to

(82)

For the chosen sigmoid function, and
. Therefore, by renaming the quantities

and , (82) can be written as an algebraic
equation with respect to

(83)

and, with some manipulation, it can be simplified to

(84)

The terms in the above equation can be rearranged to obtain a
quadratic equation (65), where, for convenience, the following
constants are introduced:

(85)

with , and

(86)

REFERENCES

[1] Handbook of Intelligent Control, D. A. White and D. A. Sofge, Eds.,
Van Nostrand, New York, 1992, pp. 65–86. P. J. Werbos, Neurocontrol
and Supervised Learning: An Overview and Evaluation.

[2] R. S. Sutton and A. G. Barto, Reinforcement Learning. Cambridge,
MA: MIT Press, 1998.

38 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 16, NO. 1, JANUARY 2005

[3] S. Lane and R. F. Stengel, “Flight control design using nonlinear inverse
dynamics,” Automatica, vol. 24, no. 4, pp. 471–483, 1988.

[4] M. G. Cox, “Practical spline approximation,” in Lecture Notes in Mathe-
matics 965: Topics in Numerical Analysis, P. R. Turner, Ed. New York:
Springer-Verlag, 1982.

[5] A. Antoniadis and D. T. Pham, “Wavelets and statistics,” in Lecture
Notes in Statistics 103. New York: Springer-Verlag, 1995.

[6] C. K. Chui, An Introduction to Wavelets. New York: Academic, 1992.
[7] T. Lyche, K. Mørken, and E. Quak, “Theory and algorithms for nonuni-

form spline wavelets,” in Multivariate Approximation and Applications,
N. Dyn, D. Leviatan, D. Levin, and A. Pinkus, Eds, Cambridge, U.K.:
Cambridge Univ. Press, 2001.

[8] J. H. Friedman, “Multivariate adaptive regression splines,” Ann. Statist.,
vol. 19, pp. 1–141, 1991.

[9] S. Karlin, C. Micchelli, and Y. Rinott, “Multivariate splines: A proba-
bilistic perspective,” J. Multivariate Anal., vol. 20, pp. 69–90, 1986.

[10] C. J. Stone, “The use of polynomial splines and their tensor products
in multivariate function estimation,” Ann. Statist., vol. 22, pp. 118–184,
1994.

[11] K. S. Narendra and K. Parthasaranthy, “Identification and control of dy-
namical systems using neural networks,” IEEE Trans. Neural Netw., vol.
1, no. 1, pp. 4–27, Jan. 1990.

[12] K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, “Neural net-
works for control systems—A survey,” Automatica, vol. 28, no. 6, pp.
1083–1112, 1992.

[13] D. Linse and R. F. Stengel, “Identification of aerodynamic coefficients
using computational neural networks,” J. Guid. Control Dyn., vol. 16,
no. 6, pp. 1018–1025, 1993.

[14] H. Zhao, O. J. Hao, T. J. McAvoy, and C. H. Chang, “Modeling nutrient
dynamics in sequencing batch reactors,” J. Environ. Eng., vol. 123, pp.
311–319, 1997.

[15] I. E. Lagaris, A. Likas, and D. I. Fotiadis, “Artificial neural networks for
solving ordinary and partial differential equations,” IEEE Trans. Neural
Netw., vol. 9, no. 5, pp. 987–995, Sep. 1998.

[16] D. E. Rumelhart, G. E. Inton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, pp. 533–536, 1986.

[17] R. A. Jacobs, “Increased rates of convergence through learning rate
adaptation,” Neural Netw., vol. 1, no. 4, pp. 295–308, 1988.

[18] A. K. Rigler, J. M. Irvine, and T. P. Vogl, “Rescaling of variables in
back-propagation learning,” Neural Netw., vol. 3, no. 5, pp. 561–573,
1990.

[19] A. N. Kolmogorov, “On the representation of continuous functions of
several variables by superposition of continuous functions of one vari-
able and addition,” Dokl. Akad. Nauk SSSR, vol. 114, pp. 953–956, 1957.

[20] G. Cybenko, “Approximation by superposition of a sigmoidal function,”
Math. Control. Signals, Syst., vol. 2, pp. 303–314, 1989.

[21] K. Hornik, M. Stinchcombe, and H. White, “Multi-layer feedforward
networks are universal approximators,” Neural Netw., vol. 2, pp.
359–366, 1989.

[22] A. R. Barron, “Universal approximation bounds for superposition of
a sigmoidal function,” IEEE Trans. Inf. Theory, vol. 39, no. 3, pp.
930–945, May 1993.

[23] S. Ferrari and R. F. Stengel, “Classical/neural synthesis of nonlinear con-
trol systems,” J. Guid. Control Dyn., vol. 25, no. 3, pp. 442–448, 2002.

[24] S. Ferrari, “Algebraic and adaptive learning in neural control systems,”
Ph.D. dissertation, Princeton Univ., Princeton, NJ, 2002.

[25] S. Ferrari, “Algebraic and adaptive learning in neural control systems,”
Ph.D. dissertation, Princeton Univ., Princeton, NJ, 2002. Forward neural
network, Sec. 4.4.

[26] S. Ferrari and R. F. Stengel, “Algebraic training of a neural network,” in
Proc. Amer. Control Conf., Arlington, VA, Jun. 2001.

[27] S. Ferrari, “Algebraic and adaptive learning in neural control systems,”
Ph.D. dissertation, Princeton Univ., Princeton, NJ, 2002. Algebraically-
Constrained Adaptive Critic Architecture, Sec. 5.3.

[28] G. Strang, Linear Algebra and Its Applications, 3rd ed. Orlando, FL:
Harcourt Brace Janovich, 1988.

[29] D. Nguyen and B. Widrow, “Improving the learning speed of 2-layer
neural networks by choosing initial values of the adaptive weights,” in
Proc. Int. Joint Conf. Neural Networks, vol. III, San Diego, CA, 1990,
pp. 21–26.

[30] P. J. Werbos, “Backpropagation through time: What it does and how to
do it,” Proc. IEEE, vol. 78, no. 10, pp. 1550–1560, Oct. 1990.

[31] M. T. Hagan and M. B. Menhaj, “Training feedforward networks with
the Marquardt algorithm,” IEEE Trans. Neural Netw., vol. 5, no. 6, pp.
989–993, Nov. 1994.

[32] M. Reidmiller and H. Braun, “A direct adaptive method for faster back-
propagation learning: The RPROP algorithm,” in Proc. IEEE Int. Conf.
NN (ICNN), San Francisco, CA, 1993, pp. 586–591.

[33] A. Graham, Kronecker Products and Matrix Calculus: With Applica-
tions, Chichester, U.K.: Ellis Horwood, 1981.

[34] L. S. Cicolani, B. Sridhar, and G. Meyer, “Configuration management
and automatic control of an augmentor wing aircraft with vectored
thrust,”, NASA Tech. Paper, TP-1222, 1979.

[35] M. A. Sartori and P. J. Antsaklis, “Implementations of learning control
systems using neural networks,” IEEE Control Sys. Mag., vol. 12, no. 2,
pp. 49–57, 1992.

[36] J. Neidhoefer and K. Krishnakumar, “Neuro-gain approximation (a
continuous approximation to the nonlinear mapping between linear
controllers),” Intell. Eng. Syst. Through Artif. Neural Netw., vol. 6, pp.
543–550, 1996.

Silvia Ferrari (M’04) received the B.S. degree from Embry-Riddle Aeronau-
tical University, Daytona Beach, FL, and the M.A. and Ph.D. degrees from
Princeton University, Princeton, NJ.

She is currently an Assistant Professor of mechanical engineering and mate-
rials science at Duke University, Durham, NC, where she directs the Laboratory
for Intelligent Systems and Controls (LISC). Her principal research interests are
robust adaptive control of aircraft, learning and approximate dynamic program-
ming, and distributed sensor planning.

Dr. Ferrari is a Member of the American Institute of Aeronautics and Astro-
nautics. She received the ONR Young Investigator Award in 2004, the Wallace
Memorial Honorific Fellowship in Engineering in 2002, the Zonta International
Amelia Earhart Fellowship Award in 2000 and 2001, the AAS Donald K. Deke
Slayton Memorial Scholarship in 2001, the ASME Graduate Teaching Fellow-
ship in 2001, and the AIAA Guidance, Navigation, and Control Graduate Award
in 1999.

Robert F. Stengel (M’77–SM’83–F’93) received the S.B. degree from the
Massachusetts Institute of Technology, Cambridge, in 1960 and the M.S.E.,
M.A., and Ph.D. degrees from Princeton University, Princeton, NJ, in 1960,
1965, 1966, and 1968, respectively.

He is currently a Professor and former Associate Dean of Engineering and
Applied Science at Princeton University, where he directs the undergraduate
program in robotics and intelligent systems. He has taught courses on robotics
and intelligent systems, control and estimation, aircraft flight dynamics, and
space flight. Prior to his 1977 Princeton appointment, he was with The Ana-
lytic Sciences Corporation, Charles Stark Draper Laboratory, U.S. Air Force,
and the National Aeronautics and Space Administration. A principal designer
of the Project Apollo Lunar Module manual attitude control logic, he also con-
tributed to the design of the space shuttle guidance and control system. From
1977 to 1983, he was Director of Princeton’s Flight Research Laboratory, where
he investigated aircraft flying qualities, digital control, and system identification
using two fly-by-wire aircraft, and Vice Chairman of the Congressional Aero-
nautical Advisory Committee. He wrote the books, Optimal Control and Esti-
mation (New York: Dover Publications, 1994) and Flight Dynamics (Princeton,
NJ: Princeton University Press, 2004), and he has authored or coauthored nu-
merous technical papers and reports. Current research interests include systems
biology, nonlinear, robust, and adaptive control systems, and optimization.

Dr. Stengel is a Fellow of the American Institute of Aeronautics and Astro-
nautics (AIAA). He received the American Automatic Control Council (AACC)
John R. Ragazzini Control Education Award in 2002, the AIAA Mechanics
and Control of Flight Award in 2000, and the FAA’s first annual Excellence
in Aviation Award in 1997. He was Associate Editor at Large of the IEEE
TRANSACTIONS ON AUTOMATIC CONTROL.

	toc
	Smooth Function Approximation Using Neural Networks
	Silvia Ferrari, Member, IEEE, and Robert F. Stengel, Fellow, IEE
	I. I NTRODUCTION
	II. D EVELOPMENT OF N EURAL N ETWORK W EIGHT E QUATIONS

	Fig.€1. Sample scalar-output network with q -inputs and s -n
	III. A LGEBRAIC T RAINING A LGORITHMS
	A. Exact Matching of Function Input Output Data
	B. Approximate Matching of Gradient Data in Algebraic Training

	Fig.€2. Exact input output-based algebraic algorithm with added
	C. Approximate Matching of Function Input Output Data

	Fig. 3. Superposition of $m s_{g}$ -node neural networks into on
	D. Exact Matching of Function Gradient Data
	E. Example: Neural Network Modeling of the Sine Function
	Fig.€4. Exact gradient-based algebraic algorithm.

	TABLE I D ATA S ET U SED FOR A LGEBRAIC T RAINING OF A N EURAL N
	IV. N EURAL N ETWORK C ONTROL OF A IRCRAFT BY AN A LGEBRAIC T RA

	Fig.€5. Algebraic training algorithm for modeling the sine funct
	Fig.€6. Comparison between the output of the algebraically train
	A. Modeling of Longitudinal Trim Control Settings

	Fig.€7. Trim-map control surfaces, the asterisks symbolize corre
	Fig.€8. Trim-throttle function approximation obtained from outpu
	Fig.€9. Final trim-control function approximation where (a) is o
	Fig.€10. Trim-elevator function approximation obtained by the LM
	B. Modeling of Coupled Longitudinal and Lateral Trim Control Set

	TABLE II P ERFORMANCE C OMPARISON OF T RAINING A LGORITHMS FOR T
	Fig.€11. Forward neural network architecture (summation symbols
	Fig.€12. Trim control surfaces as modeled by the forward neural
	Fig. 13. Actual trim control surfaces plotted over a $\{V_{c}, H
	C. Nonlinear Feedback Neural Networks

	TABLE III C OMPARISON OF N EURAL N ETWORK G RADIENTS W ITH A CTU
	V. C ONCLUSION

	Handbook of Intelligent Control, D. A. White and D. A. Sofge, Ed
	R. S. Sutton and A. G. Barto, Reinforcement Learning . Cambridge
	S. Lane and R. F. Stengel, Flight control design using nonlinear
	M. G. Cox, Practical spline approximation, in Lecture Notes in M
	A. Antoniadis and D. T. Pham, Wavelets and statistics, in Lectur
	C. K. Chui, An Introduction to Wavelets . New York: Academic, 19
	T. Lyche, K. Mørken, and E. Quak, Theory and algorithms for nonu
	J. H. Friedman, Multivariate adaptive regression splines, Ann. S
	S. Karlin, C. Micchelli, and Y. Rinott, Multivariate splines: A
	C. J. Stone, The use of polynomial splines and their tensor prod
	K. S. Narendra and K. Parthasaranthy, Identification and control
	K. J. Hunt, D. Sbarbaro, R. Zbikowski, and P. J. Gawthrop, Neura
	D. Linse and R. F. Stengel, Identification of aerodynamic coeffi
	H. Zhao, O. J. Hao, T. J. McAvoy, and C. H. Chang, Modeling nutr
	I. E. Lagaris, A. Likas, and D. I. Fotiadis, Artificial neural n
	D. E. Rumelhart, G. E. Inton, and R. J. Williams, Learning repre
	R. A. Jacobs, Increased rates of convergence through learning ra
	A. K. Rigler, J. M. Irvine, and T. P. Vogl, Rescaling of variabl
	A. N. Kolmogorov, On the representation of continuous functions
	G. Cybenko, Approximation by superposition of a sigmoidal functi
	K. Hornik, M. Stinchcombe, and H. White, Multi-layer feedforward
	A. R. Barron, Universal approximation bounds for superposition o
	S. Ferrari and R. F. Stengel, Classical/neural synthesis of nonl
	S. Ferrari, Algebraic and adaptive learning in neural control sy
	S. Ferrari, Algebraic and adaptive learning in neural control sy
	S. Ferrari and R. F. Stengel, Algebraic training of a neural net
	S. Ferrari, Algebraic and adaptive learning in neural control sy
	G. Strang, Linear Algebra and Its Applications, 3rd ed. Orlando,
	D. Nguyen and B. Widrow, Improving the learning speed of 2-layer
	P. J. Werbos, Backpropagation through time: What it does and how
	M. T. Hagan and M. B. Menhaj, Training feedforward networks with
	M. Reidmiller and H. Braun, A direct adaptive method for faster
	A. Graham, Kronecker Products and Matrix Calculus: With Applicat
	L. S. Cicolani, B. Sridhar, and G. Meyer, Configuration manageme
	M. A. Sartori and P. J. Antsaklis, Implementations of learning c
	J. Neidhoefer and K. Krishnakumar, Neuro-gain approximation (a c

