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Abstract—Information-driven control can be used to develop intelligent sensors that can optimize their measurement value based on
environmental feedback. In object tracking applications, sensor actions are chosen based on the expected reduction in uncertainty also
known as information gain. Random finite set (RFS) theory provides a formalism for quantifying and estimating information gain in
multi-object tracking problems. However, estimating information gain in these applications remains computationally challenging.

This paper presents a new tractable approximation of the RFS expected information gain applicable to sensor control for multi-object
search and tracking. Unlike existing RFS approaches, the information gain approximation presented in this paper considers the
contributions of non-ideal noisy measurements, missed detections, false alarms, and object appearance/disappearance.

The effectiveness of the information-driven sensor control is demonstrated through two multi-vehicle search-while-tracking
experiments using real video data from remote terrestrial and satellite sensors.

Index Terms—Sensor control, information gain, multi-object tracking, random finite set, cell multi-Bernoulli, bounded field-of-view,

Kullback-Leibler divergence

1 INTRODUCTION

ANY modern multi-object tracking applications involve

mobile and reconfigurable sensors able to control the
position and orientation of their field-of-view (FoV) in order
to expand their operational tracking capacity and improve
state estimation accuracy when compared to fixed sensor
systems. By incorporating active sensor control in these
dynamic tracking systems, the sensor can autonomously
make decisions that produce observations with the highest
information content based on prior knowledge and sensor
measurements [1], [2], [3]. Also, the sensor FoV is able to
move and cover large regions of interest, potentially for pro-
longed periods of time. By expanding the autonomy and
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operability of sensors, however, several new challenges are
introduced. As the sensor moves and reconfigures itself, the
number of objects inside the FoV changes over time. Also,
both the number of objects and the objects’ states are
unknown, time-varying, and subject to significant measure-
ment errors. As a result, existing tracking algorithms and
information gain functions (e.g., [1], [2], [3]) that assume a
known number of objects and known data association are
either inapplicable or significantly degrade in performance
due to measurement noise, object maneuvers, missed/spu-
rious detections, and unknown measurement origin.
Through the use of random finite set (RFS) theory, this
paper formulates the multi-object information-driven con-
trol problem as a partially-observed Markov decision pro-
cess (POMDP). Sensor actions can then be decided to
maximize the expected information gain conditioned on a
probabilistic information state. Information-theoretic func-
tionals, such as expected entropy reduction (EER) [4], [5],
Cauchy-Schwarz Divergence (CSD) [6], [7], Kullback-Lei-
bler divergence (KLD) [8], and Rényi divergence [9], [10],
have been successfully used to represent sensing objectives,
such as detection, classification, identification, and tracking,
circumventing exhaustive enumeration of all possible out-
comes. However, RFS-based information-theoretic sensor
control policies remain computationally challenging. Alter-
natively, they require simplifying assumptions that limit
their applicability to vision-based search-while-tracking
(SWT) systems. Tractable solutions to date employ the so-
called predicted ideal measurement set (PIMS) approxima-
tion [11], by which sensor actions are selected based on ideal
measurements with no measurement noise, false alarms, or
missed detections. This paper presents a new computation-
ally tractable higher-order approximation called the cell
multi-Bernoulli (cell-MB) approximation for a restricted

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/


https://orcid.org/0000-0003-3212-7201
https://orcid.org/0000-0003-3212-7201
https://orcid.org/0000-0003-3212-7201
https://orcid.org/0000-0003-3212-7201
https://orcid.org/0000-0003-3212-7201
https://orcid.org/0000-0002-9045-2398
https://orcid.org/0000-0002-9045-2398
https://orcid.org/0000-0002-9045-2398
https://orcid.org/0000-0002-9045-2398
https://orcid.org/0000-0002-9045-2398
https://orcid.org/0000-0002-7652-6311
https://orcid.org/0000-0002-7652-6311
https://orcid.org/0000-0002-7652-6311
https://orcid.org/0000-0002-7652-6311
https://orcid.org/0000-0002-7652-6311
mailto:klegrand@purdue.edu
mailto:klegrand@purdue.edu
mailto:zhup@marshall.edu
mailto:ferrari@cornell.edu
https://doi.org/10.1109/TPAMI.2022.3223856
https://doi.org/10.1109/TPAMI.2022.3223856

7196

class of multi-object information gain functions satisfying
cell-additivity constraints. Unlike existing approximation
methods, the cell-MB approximation accounts for higher-
order effects due to false alarms, missed detections, and
non-Gaussian object probability distributions.

The cell-MB approximation and KLD information gain
function presented in this paper also account for both dis-
covered and undiscovered objects by enabling the efficient
computation of the RFS expectation operation. In particular,
a partially piecewise homogeneous Poisson process is used
to model undiscovered objects efficiently over space and
time, including in challenging settings in which objects are
diffusely distributed over a large geographic region. Prior
work in [12] established a multi-agent probability hypothe-
sis density (PHD)-based path planning algorithm aimed at
maximizing the detection of relatively static objects. In [13],
the exploration/exploitation problem was addressed by
establishing an information-theoretic uncertainty threshold
for triggering pre-planned search modalities. The occu-
pancy grid approach in [14] was successfully implemented
for tracking and discovering objects with identity-tagged
observations. A unified search and track solution was also
proposed in [15] based on Poisson multi-Bernoulli mixture
(PMBM) priors and a non-information-theoretic reward.
However, these existing methods all rely on the PIMS
approximation and, therefore, neglect the contribution of
non-ideal measurements in the prediction of information
gain. Preliminary results of this work were reported in [16].

The new RFS information-driven approach presented in
this paper derives a cell-MB approximation of the RFS infor-
mation gain expectation that accounts for non-ideal measure-
ments. A new KLD function is shown to be cell-additive and
employed to represent information gain for discovered and
undiscovered objects and, subsequently, is approximated
efficiently using the cell-MB decomposition. The effective-
ness of this new approach is demonstrated using real video
data in two distinct and challenging tracking applications
involving multiple closely-spaced ground and marine
vehicles maneuvering in a cluttered and remote environment.
The proposed approach is demonstrated by tracking and
maintaining discovered vehicles using an optical sensor with
a bounded FoV, while simultaneously searching for and dis-
covering new vehicles as they enter the surveillance region.

2 PROBLEM FORMULATION

This paper considers an online SWT problem involving a
single sensor with a bounded and mobile FoV that can be
manipulated by an automatic controller, as illustrated in
Fig. 1. The sensor objective is to discover and track multiple
unidentified moving objects in a region of interest (ROI)
that far exceeds the size of the FoV. The objects are charac-
terized by partially hidden states and are subject to
unknown random inputs, such as driver commands, and
may leave and enter the ROI at any time. The sensor control
inputs are to be optimized at every time step in order to
maximize the expected reduction in track uncertainty, as
well as the overall state estimation performance.

The number of objects is unknown a priori and changes
over time because objects enter and exit the surveillance
region as well as, potentially, the sensor FoV. Let N;; denote
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Fig. 1.

Conceptual
wherein the sensor field-of-view S is controlled to maximize the cell
multi-Bernoulli approximated information gain.

image of multi-object search-while-tracking,

the number of objects present in the surveillance region WV at
time t;,. The multi-object state X, is the collection of N}, sin-
gle-object states at time ¢, and is expressed as the finite set

X =A{xk1,- - xin ) € F(X) (1)

where x;,; is the ith element of X}, and F(X) denotes the col-
lection of all finite subsets of the object state space X.
Throughout this paper, single-object states are represented
by lowercase letters, while multi-object states are repre-
sented by finite sets and denoted by italic uppercase letters.
Bold lowercase letters are used to denote vectors. Spaces are
represented by blackboard bold symbols, where IN; denotes
the set of natural numbers

Ne2{1,...,0 ©@

The multi-object measurement is the collection of M}, sin-
gle-object measurements at time ¢, and is expressed as the set

Zy = {zk‘,ly cee 7Zk,Mk} € }—(Z) 3)

where 7 denotes the measurement space. The sensor resolu-
tion is such that single-object detections z;; are represented
by points, e.g., a centroidal pixel, with no additional classifi-
cation-quality information. Because detections contain no
identifying labels or features, the association between tracked
objects and incoming measurement data is unknown.

Often in tracking, object detection may depend only a
partial state s € X; C R™, where X, x X, = X C R"™ forms
the full object state space. For example, the instantaneous
ability of a sensor to detect an object may depend only on
the object’s relative position. In that case, X; is the position
space, and X, is composed of non-position states, such as
object velocity. This nomenclature is adopted throughout
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the paper while noting that the approach is applicable to
other state definitions.

The sensor FoV is defined as a compact subset S;, C X,.
Then, object detection is assumed to be random and charac-
terized by the probability function

Poi(Xe; Si) = 1s,. (k) - Ppi(Sk) 4)

where 1g, (s;) is the indicator function and where the single-
argument function pp j(s;) is the probability of object detec-
tion for an unbounded FoV. When an object is detected, a
noisy measurement of its state x;, is produced according to
the likelihood function

zj, ~ gr(zi|xi) ()

where z;, € 7. In addition to detections originating from
true objects, the sensor produces extraneous measurements
due to random phenomena, which are referred to as clutter
or false alarms. Each resolution cell (e.g., a pixel) of the sen-
sor image plane is equally likely to produce a false alarm,
and thus, the clutter process is modeled as a Poisson RFS
process with PHD «,;(z) [17]. Further discussion on Poisson
RFSs and the PHD function can be found in Section 3.1.

Let u; € U, denote the sensor control inputs that,
through actuation, determine the position of the sensor FoV
at time ¢;, Sy, where Uy, is the set of all admissible controls.
The control u;, influences both the FoV geometry, Sy, and
the sensor measurements, Z;, due to varying object visibil-
ity. Because in many modern applications the surveillance
region W is much larger than the sensor FoV, only a fraction
of the total object population can be observed at any given
time. Therefore, given the admissible control inputs Uy, let
the field-of-regard (FoR) be defined as

Tké U Sk(uk) (6)

ukel’k

and represent the composite of regions that the sensor can
potentially cover (although not simultaneously) at the next
time step.

Then, the sensor control problem can be formulated as an
RFS POMDP [9], [18], [19], that includes a partially- and nois-
ily-observed state X}, a known initial distribution of the state
fo(Xy), a probabilistic transition model f;,—1 (X1 X;—1), a set
of admissible control actions U}, and a reward R, associated
with each control action. At every time k, an RFS multi-object
tracker provides the prior fi;_1(Xy|Zo4—1) and the sensor
control input is chosen so as to maximize the expected infor-
mation gain, or,

u;, = argmax{E[Ri(Zi; Sk, fie1 (Xl Zox-1), wor1)]} @)

ukéL';\,

where E[] is the expectation operator and the functional
dependence of Z;, and S, on uy, is omitted for brevity here but
is described in [20]. In this paper, R, is taken to be an informa-
tion gain function, while noting that the presented results are
more broadly applicable to any integrable reward function
satisfying the cell-additivity constraint defined in Section 4.

A computationally tractable approximation of the expected
information gain in (7) is derived using the new cell-MB approx-
imation presented in Section 4. Based on this approximation, a

7197

new sensor control policy for SWT applications is obtained in
Section 5 using a dual information gain function. The dual infor-
mation gain formulation treats discovered and undiscovered
objects as separate processes, modeling undiscovered objects as
a partially piecewise homogeneous Poisson process. By this
approach, a computationally efficient sensor controller is devel-
oped for SWT over potentially large geographic regions.

3 BACKGROUND ON RANDOM FINITE SETS

RFS theory is a powerful framework for solving multi-sensor
multi-object information fusion problems. In essence, RFS
theory establishes multi-object analogs to random variables,
density functions, moments, and other statistics, such that
multi-object problems can be solved in a top-down fashion
and with theoretic guarantees. For readers unfamiliar with
RFS theory, [21] provides a gentle introduction to the subject,
while [20], [22] provide a comprehensive treatment.

An RFS X is a random variable that takes values on
F(X). A labeled random finite set (LRFS) X is a random
variable that takes values on F(X x L), where L is a dis-
crete label space. Both RFS and LRFS distributions can be
described by set density functions, as established by
Mabhler’s finite set statistics (FISST) [20], [22]. This section
reviews key RFS concepts and notation for the Poisson RFS,
multi-Bernoulli (MB) RFS, and generalized labeled multi-
Bernoulli (GLMB) LRFS distributions used in this paper.

3.1 Poisson RFS
The Poisson RFS is fundamental to RFS multi-object track-
ing due to its desirable mathematical properties and its
usage in modeling false alarm and birth processes. For
example, the popular PHD filter is derived from the
assumption that the multi-object state is governed by a Pois-
son RFS process, which, in turn, leads to a computationally
efficient tracking algorithm [23], [24], [25].
The density of a Poisson-distributed RFS X is

F(X) = e Vx (DY ®)
where Ny is the object cardinality mean, and D(x) is the
PHD, or intensity function, of X, which is defined on the
single-object space X. For brevity, the multi-object exponen-
tial notation,

hta H h(a) )

acA

where h? 21, is adopted throughout. For multivariate func-
tions, the dot “- ” denotes the argument of the multi-object
exponential, e.g.,:

[g(av K c)]B = Hg(a7 b7 C)

beB

(10)

The PHD is an important statistic in RFS theory as its
integral over a set T'C X gives the expected number of
objects in that set:

E[|X N T|] = /TD(x)dx (11)

The PHD of a general RFS X is given in terms of its set den-
sity f(X) as [23]
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The integral in (12) is a set integral, defined as
/j X)5X & Z /f (X1 X })dxs - - - dxe (13)
n=| 0

The set integral is a fundamental construct of RFS theory
and enables the direct translation of the Bayes’ filter recur-
sion to the multi-object setting, as shown in [22] and dis-
cussed in Section 3.4. Set integration via (13) also presents
practical challenges, as exact computation is rarely possible
due to the infinite summation of nested multivariate inte-
grals required. This challenge is a key motivation of the trac-
table cell-MB approximation introduced in Section 4.

3.2 Multi-Bernoulli RFS

In an MB distribution, a given object’s existence is modeled
as a Bernoulli random variable and specified by a probabil-
ity of existence. As such, the MB RFS can accurately model
a variety of multi-object processes when the true existence

of objects is unknown and subject to change. The density of
an MB distribution is [20, p. 102]

i i Np
Ny r'Op'o (x,.
F(X) = [1 _ ,«(4)] [M} (14)
1<iy #Fin <M 1=70
where n = |X|, M is the number of MB components and
maximum possible object cardinality, r’ is the probability
that the ith object exists, and p’(x) is the single-object state

probability density of the ith object if it exists. Given an MB
distribution with density (14), its PHD is given by

M

=S P

=1

D(x) (15)

3.3 GLMB RFS
The density of a GLMB distribution proposed in [26] is
given by

(%) 3w (L(X)pe,

ez

(16)

where = is a discrete space, and where each £ € = represents
a history of measurement association maps, each pl¥(-, /) is
a probability density on X, and each weight w'¢) is non-neg-
ative with

2

(ILEeF(L)xE

w(I) =1

The label of a labeled state z is recovered by £(z), where L :
X x L~ L is the projection defined by L((z,¢)) £ £. Simi-
larly, for LRFSs, £(X)£{L(z): 2 € X}. The distinct label
indicator A(X) = | XD(|£(X)|) ensures that only sets with
distinct labels are considered.

3.4 Multi-Object Filtering
Online estimation of the multi-object state is performed
using the data-driven GLMB filter, which provides the
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Bayes-optimal solution of the measurement-driven Bayes
filter recursion [27]:

.}Zp()zp,k‘lz():k‘fl) = /]:l()o(p.kpc(k—l)fo}()zk—l‘ZO:k—l)(s)o(k—l (17)

9(Zi X3) fo(Xp sl Zok—1) fr(Xb)

S0 T 92| X) F o (X bl Zok) oy (X )5X

The function time indices have been suppressed for brevity,
and f #(Xpx) and fb k(X n.k) denote the density of persisting
and blrEh objects, respectively, where the joint state X; =
Xp i UXp i The accent “°” is used to distinguish labeled
states and functions from their unlabeled equivalents,
where a state’s label is simply a unique number or tuple to
distinguish it from the states of other objects and associate
track estimates over time. f ik-1(Xp x| Xg-1) is the multi-
object transition density, gk(Zk\X %) is the multi-object mea-
surement likelihood function, and gy, is used to denote both
the single-object and multi-object measurement likelihood
function. The nature of the likelihood function can be easily
determined from its arguments.

3.5 Kullback-Leibler Divergence

Like single-object distributions, the similarity of RFS distri-
butions may be measured by the KLD. Let f; and f, be inte-
grable set densities where f; is absolutely continuous with
respect to fy. Then, the KLD is [8, p. 206]

- o ()

Further simplification is possible if f, and f; are Poisson
with respective PHDs D, and D;, in which case

(19)

(20)

I(f1; fo) = No — N1 + / Dy (y) - log (g;g;) dy

where Ny = [Dy(y)dy and N; = [ D(y)dy. Importantly,
when fy and f; represent prior and posterior densities,
respectively, the KLD is a measure of information gain. By
formulating control policies based on RFS divergence meas-
ures, the complicated effects of spatial uncertainty, false
alarms, missed detections, existence uncertainty, and object
appearance/disappearance are elegantly captured in a com-
pact and abstract objective, as depicted in Fig. 2 and
described in the following section.

4 INFORMATION-DRIVEN CONTROL

The objective of information-driven control is to maximize
the value of the information gained by future measurements
before they are known to the sensor. The expected informa-
tion gain, therefore, can be obtained by marginalizing over
the set Zj, using an available measurement model. Then,
the expected information gain obtained at the next time step
can be obtained from the set integral

E[Ry] Z/Rk(Zk; Vf(Zi)82Z), (21)

where f(Z},) is the predicted measurement density condi-
tioned on past measurements. In general, direct evaluation of
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spatial

uncertainty false alarms

existence
uncertainty

appearance/
disappearance

missed
detections

Fig. 2. Graphical representation of important SWT considerations that
are elegantly encapsulated in a compact and abstract RFS information
gain function.

(21) is computationally intractable due to the infinite summa-
tion of nested single-object integrals (see (13)). Furthermore,
each integrand evaluation encompasses a multi-object filter
update and subsequent divergence computation. As such,
principled approximations are needed for tractable computa-
tion of the expected information gain.

4.1 The Cell-MB Distribution

A new approximation of RFS density functions is presented
in this section and then used to obtain the information gain
expectation. This approach, referred to hereon as the cell-
MB approach, approximates an arbitrary measurement den-
sity as an MB density with existence probabilities and
single-object densities derived from a cell decomposition of
the measurement space.

Definition 1. Consider the decomposition of the space Y into P
disjoint subspaces, or cells, as

1 P
Y=Y4---&¥Y (22)
Given the cell decomposition (22), the RFS

Y ={y,,...

is considered to be cell-MB if it is distributed according to the
density

Yot

Np

Fvy=a, 1=

. .
00 Nn
: [—p] v “)] 23)
1<t djeep| 1TV
where
i
A(Ky)é{l YU <1vie{l...P} o
0 otherwise
and .
[rway =1 i=tp @
i

Note that the cell-MB distribution is a special case of the MB
distribution in which the probability of more than one object
occupying the same cell is zero.
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Fig. 3. The PHD of an RFS distribution f(Y") (top) and its cell-MB approx-
imation (bottom), where each cell j has a corresponding probability of
existence r/ and spatial density p’(y).

In [28], a collection of Bernoulli distributions was defined
over an occupancy grid by integration of the PHD for
dynamic map estimation applications. Inspired by [28], in
this paper, a general cell-MB approximation is developed
for an arbitrary density and appropriate cell decomposition.
The following proposition shows that the best cell-MB
approximation, as defined by KLD minimization, has a
matching PHD and cell weights equal to the expected num-
ber of objects in each cell.

Proposition 1. Let f(Y) be an arbitrary set density with PHD
1 P
D(y)and Y W-- - X bea cell decomposition of space Y such that

/jD(y)dygl, ji=1,....,P (26)
T

If f(Y) is a cell-MB distribution over the same cell decomposi-

tion with parameters {rj,p"}f:l, the KLD between f(Y) and

f(Y) is minimized by parameters

v = [ 15Dy @
YY) =51, 5D) e8)

The proof is provided in Appendix A, available online. An
example 2 x 4 cell decomposition and corresponding cell-MB
approximation is shown in Fig. 3 for illustration. As shown,
the cell-MB approximation has a matching PHD surface, but
within each C?H Jj, the spatial density p’(y) is confined to the

cell support Y. When applied to the predicted measure-
ment density, the cell-MB approximation results in a
simplified multi-object expectation for a restricted class
of information gain functions, as described in the follow-
ing subsection.

4.2 Information Gain Expectation: Cell-MB

In order to reduce the computational complexity associated
with the set integral in (21), this subsection shows that the
multi-object information gain expectation simplifies to a
finite sum involving only single-object integrals, assuming
the measurement is cell-MB distributed and the information
gain function in (21) is cell-additive, as defined in this
subsection.
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Given the FoV S C X, let

J J
SA8NX, (29)
Furthermore, assume that position state cells do not overlap

j
at the FoV bounds, such that each position state cell X; is
either wholly included in or wholly excluded by S:

J J J

XK N\NS=0 VS#0 (30)
This assumption is without loss of generality, as any viola-
tlon 1s resolved by subdividing a cell X, into two new cells
X N S and “{ \S Then, the cell-additivity condition can
be defined as follows.

1 P
Definition 2. Given a decomposition 7, ¥ - - - W 7 of space 7., the
information gain function Ry(-) is cell-additive if

Lid i g
= ZRk(Zk N 7;Sk)

=1

Rk(Zk,Sk) (31)

Theorem 1. Let Z;, be distributed accordmg to the cell-MB density
f(Zy) with parameters {r7, pJ} -, and the cell decomposition

W Z (32)

If the information gain function Ry(-) is integrable and cell-
additive (Def. 2), then the expected information gain is

P ;
K = ZRk(@; ‘Sl‘k)(l —l) + fzik ol (33)

where

" jo
RL2 [ Ril{zh Sy @iz en
Proof of Theorem 1 is given in Appendix B, available in the
online supplemental material.

Remark: In (31), (33), and (34), the auxiliary information
gain arguments are suppressed for brevity and to highlight
the structure of the cell-MB approximation.

The remainder of this paper considers information gain
functions satisfying the cell-additivity constraint of (31),
such as the PHD filter update based KLD information gain.
Note that adopting the PHD filter for estimating the infor-
mation gain does not require using it for multi-object track-
ing. Given an arbitrary RFS prior density fy;_1(X) and its
PHD D1 (x), the PHD filter update based (hereon abbre-
viated as “PHD-based”) KLD information gain is

Ri(Z; S, Dyjp-1) = /x Dijp—1(x)

x {1 = Lz(x;S)+ Lz(x;8)log [Lz(x;S)]}dx  (35)
where the pseudo-likelihood function
Lz(X; 8) =1- pD(X; 8)
Pp(x:S) - 9(z[x)
+ (36)
; ke(2) + [ Pp (% 8)g(2[x) Dyji—1 (x)dx

is adopted from [20, p. 193]. The following proposition
establishes that (35) is cell-additive for appropriate cell
decompositions.
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Proposition 2. Assume there exists a joint decomposition

1 P 1 P
Z=7w-W7, X=X -y (37)

J
such that (30) is satisfied, and assume that an object in cell X

can only generate measurements within its corresponding mea-

J
surement cell 7, i.e.,:

J J
Dy (Mge(zlx) =0 ¥xe X, zeZ, j#] (38)
Then, the PHD-based KLD is cell-additive:
P J j
Ri(Z;S, Dygi1) = Y Ri(Z N 758, D) (39)
=1

Proof of Proposition 2 is provided in Appendix C, avail-
able in the online supplemental material. Proposition 2
establishes that for appropriate cell decompositions, the
PHD-based KLD for a given FoV is equivalent to the sum of
PHD-based KLD information gains for smaller “virtual”
FoVs. Perfect cell-additivity requires satlsfymg (38), which,

in turn, implies that an object in cell X does not generate a

measurement in 7 for i # j. In general, violations of (38) are
tolerable and result in approximation errors that are negligi-
ble in comparison to the stochastic variations in the actual
information gain. Furthermore, these simplifying assump-
tions need not be satisfied by the multi-object tracker.

The cell-MB approximation accounts for the potential
information gain of non-ideal measurements, which may
include missed detections, clutter, and measurements origi-
nating from new objects. The latter case is particularly
important for the search of undiscovered objects, as is
shown in the following section.

5 SEARCH-WHILE-TRACKING SENSOR CONTROL

This section presents a dual information gain function and
associated sensor control policy that takes into account both
discovered and undiscovered objects. The information gain
function proposed in Section 5.1 balances the competing
objectives of object search and tracking by means of a uni-
fied information-theoretic framework. Sections 5.2 and 5.3
derive the expected information gain functions for discov-
ered and undiscovered objects, respectively, the combina-
tion of which is maximized by the sensor control policy in
Section 5.4. Sections 5.5 and 5.6 describe multi-object filters
for recursive estimation of the undiscovered and discovered
object densities, respectively, and the overall SWT algo-
rithm is summarized in Section 5.7.

5.1 Dual Information Gain Function

Separate density parameterizations for discovered and
undiscovered objects are employed such that their unique
characteristics may be leveraged for computational effi-
ciency. Let X, € F(X) be the state of objects that were not
detected during steps 0,...,k— 1 and Xq; € F(X) be the
state of objects detected prior to k. Denote by Z, , Z,x, and
Z. the detections generated by X, X4z and clutter,
respectively. Let V;, 27, U Z.), and W, 2 Z, ;U Z.;. Then,
the sensor control policy is defined in terms of the dual
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information gain as

u} = arg max {E[R;f (Vis S (up))]

llk.E‘Uk
+ E[RZ(Wk;Sk(uk))]} (40)
h
where R +) = Ral; “ Da 1) 4D
Ri(+5) = Ri(5 5 Dugir-1) (42)

are used for brevity, and Dgji—; and D, ,—1 are the prior
PHDs of discovered and undiscovered objects, respectively.
The individual information gain expectations for discovered
and undiscovered objects are derived in the following
subsections.

5.2 Expected Information Gain of Discovered
Objects

If fy—1 (Vi) is cell-MB with parameters {r/, p\j,}f:l, then from
Theorem 1 it follows that

E[R}] = ZR" G801 —r) + RS 1 @)
where
R 2 [ Ri(a): Swile)ie m
r1(S) :/1£(Z)Dv,k\k71(z§s)dz (45)
(@) = 1, (E)D. 1 (:5) 46)

The multi-object tracker provides the prior GLMB density
fp kk—1(Xpk|Zox-1), from which the discovered object PHD

is obtained as
Dy = > > w(I)pP(x0) (A7)
(1€)eF(L)xZ tel

The PHD D - can be obtained from the predicted mea-
surement density fy;—1(V;) through application of (12).
From the prior GLMB density,

i 0 = [ VI3 i 1 (00X 48)
Given a GLMB prior, explicit computation of the predicted
measurement density is computationally challenging because
it requires summation over all possible object-to-measure-
ment association hypotheses. Instead, the discovered object
PHD is readily obtained from the GLMB prior, from which
D, i1 is approximated as

Dy yji-1(z; S) Q/Ddﬁk\kfl(x)pD,k(m S)gr(z|x)dx

+ K,;’k(z) (49)

Because an analytic solution of the integral in (44) is not
available, a numerical quadrature rule is employed. In the

proposed approach, a measurement cell is further tessel-

lated into regions {Q} ’1 C 7, based on the anticipated
information value of measurements within each region, as
illustrated in Fig. 4. Then, given a representative
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0.4

0.35

Fig. 4. Example quadrature of the single-measurement conditional
expected information gain, where representative measurements z;; are
denoted by red dots and quadrature regions are outlined in cyan.

measurement z;; for each region, the conditional informa-
tion gain expectation is approximated as

RS ZRd (2,3 8wz 4, (50)
where A;; is the volume of region QZ-. By this approach, the
PHD-based KLD information gain function is evaluated
only R; times. Further details regarding the computation of
the quadrature regions and representative measurement
points are provided in Appendix D, available in the online
supplemental material.

5.3 Expected Information Gain of Undiscovered
Objects

This subsection presents a new approach to efficiently
model the undiscovered object distribution, which may be
diffuse over a large region. Although Gaussian mixtures
(GMs) and particle representations can be used to model
undiscovered objects, they are highly inefficient at repre-
senting diffuse distributions. Thus, in this paper, the posi-
tion-marginal density of undiscovered objects is taken to be
piecewise homogeneous with PHD

p 1;(s)
X

Du“k|k71(s) - (51)

A k-1

= ACK,)
where \; Hk 1 is the expected number of undiscovered
ob]ects in X at time step k£ and A(X ) is the volume of cell

Xs. For ease of exposition, the undiscovered object PHD is
modeled using the same cell decomposition employed in
the cell-MB approximation. Modeling undiscovered objects
as a Poisson point process is one of the core ideas of the
PMBM filter, where discovered objects are modeled as a
multi-Bernoulli mixture (MBM) RFS. While discovered
objects are modeled as a GLMB distribution in this work,
the cell-MB SWT framework is amenable to any discovered
object RFS prior, including Poisson, independently and
identically distributed cluster (i.i.d.c.), MB, MBM, labeled
multi-Bernoulli (LMB), and GLMB distributions.
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If fr—1(Wy) is cell-MB with parameters {rd,, pw} =1, then
by Theorem 1,
P j ]
E[R{] = > Ri(0;81)(1 - 1)) + Ry LS (52)
=
where
RIS 2 [ Rz S 21z 53
RS = [ 1, @D @Sz (54)
i ke
[ po(s:S) (55)
Ak, %
Pl (z;S) = — 1; (2) Dy i—1(2; S) (56)
Dy yi-1(z; S) = / Dy yii—1 (X)pp .k (x; S) gr(z|x)dx
+ ke(2) (57)

Under a piecewise homogeneous PHD, the undiscovered
object information gain simplifies drastically if the measure-
ment likelihood is independent of non-position states: i.e.,
gr(-|x) = gx(-|s). Following (35),

Ry (Wi; Si)
:A Dy p—1(8){1 = L, (s; Sk)

+ ka (S; Sk)log [ka (S; Sk)} }dS (58)

Given that at most one measurement may exist per cell, two
cases need to be considered: the null measurement case and
the singleton measurement case. Letting W}, = (), and after
some algebraic manipulation, the undiscovered object infor-
mation gain for a null measurement can be written as

» .
RS = 3 RE0:S)) (59)
=
J J
Ry(0; Sk) = N1 - dj - (1 — 8p(Sk)) (60)
1

42— [, po(s) + (1= po(&)log[1 - po(s)lds (6D

A(K,) 5

Furthermore, if the probability of detection is homogeneous
within cells such that

J
pD(S) = PD,j Vs e X, (62)
then (61) simplifies to
dj = ppj+ (1 —ppy)log (1 —pp;) (63)

For the singleton measurement case, similar analytic sim-
plifications of the conditional information gain (53) are lim-
ited. However, within a cell, the uniform position density of
undiscovered objects is known a priori up to an unknown
factor A;r—1. Thus, the undiscovered object information
gain can be pre—computed for efficiency and
(64)

itlk(sk) \xjj()\lﬂ\]‘ 1)
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where the function R" (Ajkr—1) returns interpolated infor-
mation gain values over A; ;1 € [0,1].
Remark: In the special case that pp(s) =1, the term

R}j(@;ék) is equivalent to the search objective term pro-
posed in [15]. The cell-MB approach differs in that perfect
detection is not assumed, and that the information gained
from detecting an undiscovered object, captured in the term
R, is also considered.

5.4 Field-of-View Optimization and Sensor Control
Prior to optimization of the FoV, the information gain asso-
ciated with each cell in the FoR is computed, as described in
Algorithm 1. The FoR cell information gains for discovered
and undlscovered objects are stored as arrays {R{[j 15 -1
and {RL[]}E -1, respectively. Then, the optimal FoV is found
as the one composed of the cells with the highest composite
information gain, without reevaluating the information
gain. With this, the sensor control that produces the desired
optimal FoV can be written as

u; = arg max Z (Ry[i] + R (65)
JG\P \ sCSp(u)
where Tk 27N }i
Algorithm 1. FoR Information Gain Pseudocode
Input: Ty, fiy1(X), Dyppor(x)
Compute Dy i1 (x) from fp;._1(X) (47)
Compute D, j,-1(z; T 1) . (49)
forj=1,. PforjsuchthatK €T do
7l — fl D, jype—1(z; T)dz
— fl D, k\k 1(z;T1)dz
Compute R (Tk) (50)
Compute Riﬁ ]k( (64)

K)
Riljl < Ri(0; TL)(l =) (Tk)
(

Ry [3] — Ry (05 Tk) 1—7 ) +Ru7 (Tk)
end for
return(R{[)) 1, (Ri[]);

Remark: Explicit computation of the cell-MB single-object
densities p/ and p/, is not required. Instead, these densities
are implicitly computed when evaluatmg the conditional

information gain expectations R/ and R yr

5.5 Undiscovered Object Prediction and Update

The prediction and update of the undiscovered object PHD
are accomplished using the cell-discretized PHD filter. The
prediction step incorporates undiscovered object motion,
birth, and death. The undiscovered object distribution
parameters are predicted and updated as

P
Ajklk-1 = Ak + ZpS,i,k Pji - Aig—1 (66)

i=1

J
Ajk = [1 —ppg-(1- 5&)(£k)):| “Ajklk-1 (67)
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(a) (b)

Fig. 5. Prior object density and FoV (a), and posterior object density after
recursive split and non-detection (b).

where Ap ;. is the expected number of newborn objects in
cell j, ps,ix is the probability that an undiscovered object in
cell i survives, and Pj; is the probability that an undiscov-
ered object moves to cell j given that it exists in cell 4.

5.6 Discovered Object Tracking

Discovered object tracking is performed using the data-
driven GLMB filter. While a detailed description of the
data-driven GLMB filter is beyond the scope of this paper,
one important consideration is highlighted involving the
FoV-dependent nonlinear probability of detection. The
data-driven GLMB is implemented in GM form, such that
single-object densities are

JE ()

PO (x, 0) = Zw§
=1

It is through the FoV-dependent pp that the filter probabilis-
tically incorporates the knowledge of where objects were
not observed.

In the filter, products of the form pp(x;S)p®(x) are
expanded about the GM component means in a zeroth-
order Taylor expansion. The accuracy of this approximation
is dependent on the GM resolution near the FoV bound-
aries. Thus, a recursive splitting algorithm [29] is employed
that identifies and splits Gaussian components that overlap
the FoV boundaries into several “smaller” Gaussians. The
resulting J'¥)(¢) component mixture replaces the original
density, enabling the accurate approximation

po(x; S)p® (x, £)
]/51

ZWMPD

An example is provided in Fig. 5, wherein the prior density
is split prior to a Bayes update, allowing for the accurate
incorporation of negative information from a non-detection.

;m!%(0), P (0)) (68)

SN (im0, PEY)

(69)

5.7 Numerical Implementation

This subsection summarizes the SWT algorithmic implemen-
tation. At each step k, a time-update (17), (66) of the previous
posterior densitiesf(X_1|Zo.x—1) and D, ;1 yields predicted
prior densities for the time of the next decision. The FoR is
constructed from admissible control actions as shown in (6),
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Fig. 6. Example video frame (a) from Albuquerque dataset, artificially
windowed to emulate smaller, movable FoV, which is enlarged in (b) to
show detail.

and the expected information gain for each cell within the
FoR is computed. The candidate FoV that contains the maxi-
mizing sum of cell information gains is found, and the corre-
sponding control (65) that yields that FoV is applied. The
sensor collects a new multi-object measurement which is
processed in the data-driven GLMB filter to update the
multi-object density, giving the posterior density in (18). The
algorithm is summarized in Algorithm 2.

Algorithm 2. SWT Sensor Control Pseudocode

Input: ,(X), Do (x)

fork=1,...,K do . .
Frjp—1 (X )7 Du,k\k—l(x) « filter prediction (f,_1(X),
Du Jk— 1( )) (17)/ (66) A )
(Rﬁi[ﬂ)] 19 (R};’[j})le < FoR_information gain(7y, fy1(X),
D, yi—1(x)) (Algorithm 1)
u; < maximize_expected_ reward((Rk[]])] L (R}:[j])f:l
Sk(u}) < apply sensor control
Zk — obtam measurement
fls,\k 1(X) < split_for_FoV (fk\k 1(X), 8p) [29]

J;k\k(jf), wkjk < filter_update (fk\k 1 (X),
Dy pjp—1(X), Zi, Si)(18), (67)
end for

)(65)

6 APPLICATION TO REMOTE MULTI-VEHICLE SWT

The cell-MB SWT framework is demonstrated in two distinct
vehicle tracking problems using real video data. The first exper-
iment, hereon referred to as the “Albuquerque” experiment, is
based on a video recorded by a fixed camera pointed at a
remote location where multiple mobile ground vehicles are
observed. The second “Sydney” experiment involves tracking
multiple mobile maritime surface vehicles using real satellite
video' taken of Sydney, Australia from the Chinese low Earth-
orbiting satellite, Jilin-1. In both experiments, real-time FoV
controlled motion is simulated by windowing the data over a
small fraction of the available frame, as illustrated in Fig. 6.
These datasets present significant tracking challenges, includ-
ing jitter-induced noise and clutter, unknown measurement
origin, merged detections from closely-spaced vehicles, and,
most significantly, temporal sparsity of detections.

1. Video publicly available at https:/ /mall.charmingglobe.com


https://mall.charmingglobe.com
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Fig. 7. True trajectories of moving objects with an example image frame
as background.

6.1 Vehicle Dynamics

Vehicle dynamics are modeled directly in the image frame.
While vehicle dynamics are more naturally expressed in the
terrestrial frame, the cameras’ precise location and orienta-
tion are unknown. Thus, the transformation between image
and terrestrial coordinates could not be readily established
for the Albuquerque experiment. The Sydney video is
georegistered such that world coordinate motion maps
directly to scaled image coordinate motion.

The object state is modeled as

xi =[st ¢f]" (70)
s = [&k ﬁk}T, §k=[ék un Qk]T 71)

where & and 7, are the horizontal and vertical coordinates,
respectively, of the vehicle position with respect to the full-
frame origin, ¢, and 7, are the corresponding rates, and (),
is the vehicle turn rate.

Vehicle motion is modeled using the nearly coordinated
turn model with directional process noise [17], [30] as

Xpy1 = fr(x) + Trvp(se) (72)
where f;. is defined in [31, Ch. 11] and
%(At)bez 0251
Fk = (At)IQXQ 02><1 (73)
01x2 At

where At =1([sec| is the discrete time step interval, Iy,
denotes the n x n identity matrix, and 0,,x, denotes the m x
n matrix whose elements are zero. The covariance of the
process noise is

DT s Q D(s 0 X
E[vi] = Qu(s) = [ (31 j § o ;QISYD } (74)
X < s >
UtZ < ABQ,SYD > 0
RE 7

Q. [ 0 O'Z,<ABQ,SYD>:| ”

[ cosW¥(s) sinW(s)
D(S) - [—Sinq’(s) COS\P(S)j| e

where o xpq = 180 [arcmin/sec] and oq gyp = 30 [arcmin/sec]
are the turn rate process noise standard deviations, oy asq =
5 [pixel/sec?] and o, 4pq = 0.01 [pixel/sec?] are the standard
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Fig. 8. Albuquerque field-of-regard, 7, and primary road region 5, with
an example image frame as background.

deviation of process noise tangential and normal to the road,
respectively, and W (s) is the angle of the road segment nearest
s, measured from the horizontal axis to the tangent direction.
Information-driven sensor control efficacy fundamentally
depends on the accuracy of motion prediction and the rate of
uncertainty growth in the absence of observations. Evaluation
of multiple candidate motion models revealed that the nearly
coordinated turn model with directional process noise offered
better motion prediction and more precise uncertainty growth
over the simpler constant velocity models. Road geometry is
not applicable to the Sydney experiment, and thus an isotropic
linear process noise is used with o, syp = 0,50 = 1 [pixel/sec?].
The true trajectories of all moving objects in the Albuquerque
experiment are shown in Fig. 7.

6.2 Sensor and Scene Model

Object detections are generated from raw frame data using
normalized difference change detection [32] and fast approx-
imate power iteration subspace tracking [33] for temporal
background estimation. The single-object measurement
function is linear-Gaussian with corresponding likelihood

gr(z|x) = N(z; Hx, R),
H= [12><2 02><3] 5

(77)

R= Ui <asgsw> " L2x2 (78)
where 62 ;0 = 9 [pixel’] and oy, = 100 [pixel’]. The Albu-
querque experiment sensor FoV is a rectangular region
that is 240 pixels wide and 160 pixels tall. Rectangular
FoV geometry is also emulated in the Sydney experi-
ment, where the FoV dimensions are 1024 pixels wide
and 640 pixels tall. Moving objects within the FoV are
assumed to be detectable with probability ppx(s;) = 0.9.
The mean false alarm rates are assumed to be five and
thirty false detections per scene frame in the Albuquer-
que and Sydney experiments, respectively.

The Albuquerque and Sydney scenes are tessellated by
16 x 32 and 24 x 32 grids, respectively, of uniformly sized
rectangular cells as shown in Figs. 8 and 9. Within the Albu-
querque scene, an ROI is specified which contains the
scene’s two primary roads and is denoted by 7 due to its
equivalence to the FoR for this problem. Within the Albu-
querque RO, cells containing road pixels comprise the set
B, which is used to establish an initial uniform distribution
of undiscovered objects. In the Sydney experiment, the ROI
is defined as the main water region, including the piers and
wharves. Thus, following the assumptions established in
Section 5.3, the initial undiscovered object position marginal
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Fig. 9. Sydney field-of-regard, 7, and water region B, with example
image frame as background.

PHD is characterized by (51) with

J
Ajo = Acapgswms> X CB (79)

otherwise

where Apg = 0.137 and Asyp = 0.0593 correspond to initial
estimates of ten and thirty undiscovered objects in the
scene, respectively.

6.3 Experiment Results
The Albuquerque and Sydney experiments consist of 60 and
64 time steps, respectively. To emulate a pan/tilt camera

Fig. 10. FoV position and tracker estimates in the form of single-object
density contours for objects with probabilities of existence greater than
0.5, shown at select time steps for the Albuquerque experiment.
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Fig. 11. FoV position and tracker estimates in the form of single-object
density contours for objects with probabilities of existence greater than
0.5, shown at select time steps for the Sydney experiment.

from the wider available frame data, the FoV is assumed to
be able to be moved to any location within the scene in a sin-
gle time step. This is a reasonable assumption as these
adjustments would be less than a degree.

Some key frames of the Albuquerque and Sydney experi-
ments are shown in Figs. 10 and 11, respectively. In the early
time steps, the FoV motion is dominated by the undiscov-
ered object component of the information gain. As more
objects are discovered and tracked, the observed actions
demonstrate a balance of revisiting established tracks to
reduce state uncertainty and exploring new areas where
undiscovered objects may exist.
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Fig. 12. Albuquerque dataset SWT performance in terms of GOSPA
metric and component errors over time using cutoff distance ¢ =
20 [pixel], orderp = 2, and « = 2.

Because the overall objective of the SWT sensor control is to
reduce multi-object tracking uncertainty, SWT sensor control
performance is most naturally quantified by the resulting
multi-object tracking accuracy, as measured using the gener-
alized optimal sub-pattern assignment (GOSPA) metric [34].
For the metric parameters selected in this work, the GOSPA
metric is equal to the sum of localization errors for properly
tracked objects and penalties for missed and false tracks. The
GOSPA metric and the number of false and missed objects are
shown over time for the Albuquerque and Sydney experi-
ments in Figs. 12 and 13, respectively. The cell-MB SWT sen-
sor control effectively balances the competing objectives of
new object discovery and maintenance of established tracks,
as illustrated by the decline in missed objects and consistently
low number of false tracks. An increase in GOSPA is observed
in the final time steps of the Albuquerque experiment, which
is caused by a sharp uptick in new object appearances.

The average GOSPA over the experiment is compared
with the PIMS-based information driven control and ran-
dom FoV motion in Table 1. The cell-MB sensor control
achieves significant improvement with respect to other
methods in the number of missed and false tracks, as well
as the overall GOSPA metric, which encompasses cardinal-
ity errors and localization errors. While the PIMS approach
exhibits degraded performance in these applications, it
should still be considered as a viable method when using
an information gain function that is not cell-additive.

GOSPA

400 T T
§ 300 - =
‘5, 200 7
— 100 | | | |

Missed/False
30 T I I I T

20 - —— Missed = False ‘ .
0l H‘“\ |

0 - | |

|
30 40 50 60
Time Step, k

|
0 10 20

Fig. 13. Sydney dataset SWT performance in terms of GOSPA metric
and component errors over time using cutoff distance ¢ = 100 [pixel],
orderp =2,and ¢ = 2.
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TABLE 1
GOSPA Performance on Albugquerque and Sydney Experi-
ments, Averaged Over Experiment Duration, With Percentage
Improvement Over Baseline Random Control Shown
Parenthetically

Algorithm GOSPA [pixel] Missed False
Cell-MB 37.84 (56%) 527 (168%) 0.97 (158%)
ABQ PIMS 47.46 (24%) 9.95 (42%)  0.90 (178%)
Random 59.07 (N/A) 1410 (N/A) 250(N/A)
Cell-MB 225.00 (41%) 9.03 (85%)  1.41(97%)
SYD PIMS 267.44 (19%)  11.98 39%) 2.31 (20%)
Random 318.00( (N/A) 16.67(N/A) 278 (N/A)

The computational efficiencies of the cell-MB and PIMS
approaches are very similar and are on the order of seconds
per decision. The PIMS approximation is a single-sample
approximation, and thus requires fewer operations than the
cell-MB in general. However, when applied to the undiscov-
ered object information gain presented in this work, the cell-
MB approximation is, in fact, cheaper due to the properties
of the piecewise homogeneous Poisson point process, which
allow the undiscovered object information gain to be pre-
computed for each cell and interpolated at runtime.
Although not pursued in this work, further computational
improvements can be realized in both approaches through
further parallelization and software optimization.

7 CONCLUSION

This paper presents a novel cell multi-Bernoulli (cell-MB)
approximation that enables the tractable higher-order
approximation of the expectation of set functions that are
additive over disjoint measurable subsets. The cell-MB
approximation is useful for approximating the expectation
of computationally-expensive set functions, such as infor-
mation-theoretic reward functions employed in sensor con-
trol applications. The approach is developed in the context
of information-driven sensor control in which the objective
is to discover and track an unknown time-varying number
of non-cooperative objects with minimal estimation error.
The problem is formulated as a partially-observed Markov
decision process with a new Kullback-Leibler divergence-
based information gain that incorporates both discovered
and undiscovered object information gain. In demonstra-
tions using real terrestrial and satellite sensor data, the
search-while-tracking sensor control is used to manipulate
the sensor fields-of-view to discover and track multiple mov-
ing ground vehicles and boats from an aerial vantage point.
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