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Presenter
Presentation Notes
Welcome, My name is Julian Morelli and I am a student at Cornell University. A large portion of this work is contributed by Pingping Zhu. My advisor is Silvia Ferrari.
Today I would like to speak to you about how we approximated the value function for multiscale dynamical systems.
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• Overview:
– Multi-agent collection of autonomous robotic vehicles, 𝑂𝑂(102)

– Large temporal and spatial scales

– Uncertainty in environmental conditions

• Applications:
– Coastal & Environmental monitoring

– Surveillance

– Search and Rescue

– Recognizance

Adaptive Planning for Intelligent Collaborative Systems

1. uscg.mil
2. auvac.org 

[2]REMUS Autonomous submarine

[1]United States Coast Guard Rescue Team

Presenter
Presentation Notes
I would first like to describe to you the basis of my problem, which will lead to a greater understanding of why the value function approximation for this problem has many more challenges than are faced in traditional approximate dynamic programming. 

I am focused on adaptive planning for intelligent collaborative systems that have hundreds, and in the future, thousands of autonomous agents. These types of systems are advantageous over large spatial or temporal scales. Such applications are in coastal and environmental monitoring, surveillance, search and rescue. On these large spatial scales, It is beneficial to have many many vehicles collaborative solve a challgenge. In search and rescue applications, for example, if many inexpensive vehicles can be deployed to locate the target before the manned helicopter is deployed, it would not only decrease the mission time and save lives, but also save in costs and protect our men and women in the coast guard from being out in an uncertain and dangerous environment for longer than they have to be.
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• Multi-Agent Planning Methods:
– Prioritized Path Planning

– Multi-Agent Potential Field 
Methods

– Distributed Optimal Control

• Limitations:
– High computational complexity

– Sub- or non-optimal

– Non-adaptive/Offline methods

• Distributed Optimal Control:
– Currently best method for a 

problem this size

– Numerical solution via Generalized 
Reduced Gradient Method

Background
• Technical Challenges:

– Hundreds of ODEs

– Nonlinear dynamics

– Functional approximation

– Rapidly changing environment

Presenter
Presentation Notes
So what do these types of systems look like? 

In the bottom right is a movie with the situation I am currently working on. A subset of the agents is depicted in the 3D portion and shows a group of 500 agents navigating a large, obstacle populated environment.

There are many multi agent path planning methods such as prioritized path planning where the paths are constructed individually then the control laws are adjusted to avoid mutual collisions, but this is computationally exhaustive and does not scale well as the number of agents increases and is surely sub optimal.

Currently, distributed optimal control is the best suited method for optimally solving this type of problem, however, it also has many drawbacks as I will describe. This solution shown in the video is computed via a Generalized reduced gradient method that solves the optimality conditions derived from calculus of variations numerically.
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• Consider N autonomous robotic agents with dynamics described by the 

following system of ordinary differential equations:

• Macroscopic state, restriction operator:

• Macroscopic dynamics represented by the advection-diffusion equation:

– G is a constant matrix, 𝒘𝒘𝑖𝑖 𝑡𝑡 is an additive Gaussian noise

– Where v ≡ 𝒙̇𝒙 = 𝐟𝐟(𝐱𝐱,𝐮𝐮, t) and 𝜈𝜈 = 𝛻𝛻(𝐆𝐆𝐆𝐆T)

Distributed Optimal Control

Presenter
Presentation Notes
Here is an overview of the distributed optimal control method. N Autonomous agents satisfy this system of ordinary differential equations, where the macroscopic state, i.e. the state of the collective of agents is represented by a PDF.

We now assume that the dynamics of the macroscopic state satisfy the advection diffusion equation, which is a conservation law that conserves the total mass of the PDF to 1 over the workspace.
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• Cost function in terms of restriction operator

• PDF restriction operator must also satisfy:

and these other conditions:

Distributed Optimal Control

Presenter
Presentation Notes
We can then define a cost function in therms of the macroscopic state, which aslo satisfy these conditions.



• Currently the most effective way of solving optimal control of 

large multiscale systems

• Limitations:

– Offline Method / Non-adaptive

– Must know a priori:
– Microscopic agent dynamics
– Macroscopic evolution equation
– Definition of the restriction operator
– Environmental conditions
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Distributed Optimal Control

Obstacle Configuration

Presenter
Presentation Notes
Therefore, the problem can be solved by framing this as a nonlinear program, or by using the generalized reduced gradient iterative method as used in the results shown earlier. 

These methods are either offline, so if anything changes in the environment, if the environmental conditons are not known apriori, if the agent dynamics are not known, if the macroscopic state dynamic operator is not known, the problem cannot be solved. 

Therefore, we propose an online adaptive method that is initialized with the previous offline method for an environment that is similar to the previous, but different enough that it very drastically changes the trajectories of the agents. 

In this presentation, however, we only present that the optimal value function can be accurately learned online.
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• Workspace: 

• Agent Dynamics:

• Restriction Operator:

• Cost Function:

• Optimal Value Function:

Research Problem and Motivation

Gaussian Mixed Model 
Expectation Maximization algorithm

Presenter
Presentation Notes
Before I go through all these ingredients for my problem I would like to stress our GOAL: learn an optimal control law online agent control law in terms of pdf, initialized from simulation

Go through each bullet


Mention our macroscopic state is the GMM
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• Dynamic Programming optimizes a Value function:

– Hamilton-Jacobi-Bellman Equation

• Associated with a cost function (at time k):

Adaptive Critics

Kullback-Leibler Divergence Obstacle Repulsion Energy Consumption

Presenter
Presentation Notes
Approximate dynamic programming / adaptive dynamic programming etc. optimized a value function (or the derivative of it) in order to learn an optimal control law online. 

Our cost function has a term that gives the “distance” of the current distribution of our agents from the goal distribution, a term relating to avoiding the obstacles, as well as a term that limits the control usage or energy consumption.

In my problem, I am concerned with uncertainty in the second term here, the changing of the Lagrangian over time based on detecting changes in the environment.
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Adaptive Critics

KL-Divergence Obstacle Repulsion

Energy Consumption

Presenter
Presentation Notes
As the agents navigate the environment, the agents perception of the obstacles changes as they detect new information. These figures were produced by slightly changing the obstacle configuration, making them rougher and more realistic, but not cutting off that passageway as previously described. 

This Urep term changes as the agents experience the environment, but although the Lagrangian is changing, it is not an explicit function of time, therefore, the problem can be solved fairly similarly to the traditional methods, with a few exceptions.
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• Given a value function corresponding to a control law, and improved control 

law can be obtained as follows:

• Given a control law, the value function can be updated according to the 

following rule:

Adaptive Critics

Presenter
Presentation Notes
Cycle back and forth between these operations during delta t time steps until convergence (or for some amount of iterations)

For the rest of the talk, this boxed equation is what we have accomplished, an approximation method and architecture for learning the optimal value function online
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Gaussian Mixed Model

Presenter
Presentation Notes
Our approximation of the macroscopic PDF is a Gaussian Mixed Model where we can pic the amount of Gaussian bases.
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• GMM used to approximate macroscopic state PDF

• Form:

• Parameters cannot be ordered!

– Parameter tube is discontinuous with respect to the time step

Gaussian Mixed Model

Presenter
Presentation Notes
The problem with tis formulation, however, is that at each time step, the parameters of the basis cannot be ordered. (describe picture).

Therefore we need to project the Gaussian bases that are used to approximate our PDF onto a basis fixed in the workspace.
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Projection onto Fixed Basis
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• Project onto fixed basis of  Gaussians using inner product:

• is a coefficient vector for the fixed basis set

• Gaussian basis functions 

Projection onto Fixed Basis

Presenter
Presentation Notes
This can be done by computing the inner product between the Gaussian mixed model components and a fixed basis of gaussians centered along the workspace. 
(describe pictures)

The great thing about these projections is that they can be computed very very quickly in closed form.
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• Inner product can be computed in closed form:

– Gaussian Identity Property:

• Using the normalized basis previously defined:

Projection onto Fixed Basis

Presenter
Presentation Notes
As you can see in the Gaussian Identity property, the inner product of two gaussians becomes another Gaussian with a sum of their parameters. 

Therefore, the inner product between the components of our GMM and the normalized basis shown previously can be computed as follows.

Now we have a vector, p, that contains the coefficients for the contributions of each basis function to the PDF approximation. 

We can now use existing Temporal difference algorithms to learn the value functional.
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Functional Learning by Temporal Difference
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• Uses existing Temporal Difference (TD) and Recursive Least 

Squares Temporal Difference (RLSTD):

– Learn parameters      such that:

Value Function Learning

Presenter
Presentation Notes
The approximation architecture is seen here. These parameters alpha can now be learned in batch to initialize the value function and then updated online as the agents experience the environment.

Take distribution and map into RKHS and then learn alpha parameters in RKHS
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• Batch Learning (Offline)

– Matrix A is created with the outer product

– Vector b is created with the inner product between z and R

– where 

• Solve with matrix inverse:

Value Function Learning

Presenter
Presentation Notes
The batch learning initialization is done by creating this matrix A with the outer product of these two terms. The pi – pi+1 is the term that gives temporal difference its name. 

The b vector is the associated reqards. 

The parameters can be solved for with a simple matrix inversion. In our case A is a square matrix.
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• Recursive Learning (Online)

– e is an error term

– C is an intermediate term to compute parameters

Value Function Learning

Presenter
Presentation Notes
These parameters can also be computed online recursively using recursive least squares. 

E is an error term, and you can see that if e = 0 because the approximation is exact, then alpha = alpha + 1 … 



20

Results and Conclusions
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Results

Error:

Actual Cost Function
Actual and Approximate 

Value function

Presenter
Presentation Notes
You can see that from the actual cost function extracted from the GRG optimal solution, the actual and approximate value functions overlap and the error is such that it never really exceeds 4 units, which is pretty good considering the order of our value function ~275 maximum. The error also decays closer and closer to zero as the simulation runs, which is expected from ADP.
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• Describe a collective of agents with a restriction operator

• Approximate the optimal value function on-line from the 

parameters of the PDF

– Project GMM onto fixed basis

– Using existing temporal difference algorithms

• Future Work:

– Learn the optimal control law on-line by iteratively improving it

Conclusions

Presenter
Presentation Notes
Quickly, you have seen how we can describe a collective of many many agents with a restriction operator whose parameters do not increase as the number of agents increases

And how we can approximate the optimal solution online from the macroscopic PDF.

We can then use this approximation of the optimal value function in order to improve our control law, which is also a function of the PDF,  online.

Thank you and I will take any questions you might have.
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Presenter
Presentation Notes
Thank you very much for your time this morning, my name is Julian morelli, my email is at the bottom of the page there and I will happily answer any questions that you might have.
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Gaussian Identity Property
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Gaussian Identity Property
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