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Research Goals

 Decentralized perception: control a team of autonomous agents providing video coverage 
d it ti l

ONR BRC grant N00014-17-1-2175

and situational awareness.

 Data parsing: extract agent-level task-relevant data for high-level reasoning.

 Contested communications: reason about the scene using asynchronous decentralized g y
video data obtained from different viewpoints and environmental conditions.

 Active planning: plan and coordinate agent actions to actively obtain video that is task-
relevant and improves scene perception and interpretation.p p p p

Decentralized Video Surveillance via Mobile Camera Network:
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B k d C t Vi iBackground on Computer Vision
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Object, Action Recognition Methods

Handcrafted Features Statistical Models Deep Learning

(Marszalek et. al. 2009; Dollár et 
al. 2005; Reddy and Shah 2013)

(Ning et. al. 2008; Natarajan and 
Nevatia 2008; Zhang and Gong 2010)

(Simonyan and Zisserman, 2014; Ji et. al. 
2013; Singh et. al. 2016; Zhu et. al. 2016)

Detect and extract sparse 
features and statistics of 

image patches

Easy implementation;

User-crafted models of 
human actions; parameters 

learned from data

Interpretability; compact

Learn important features and
object/action classification 

from data

Automatic feature selection;Easy implementation; 
intuitive; scale,  translation, 

rotation, or illumination 
invariant

ff i i

Interpretability;  compact 
model of relationships;
generate inference and 

predictions

Automatic feature selection; 
feature diversity and richness; 

unsurpassed performance

Feature effectiveness is
problem-dependent; feature 
class must be chosen by user
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Dependent on model design; 
learning is computationally

intensive; poor generalization

Require large datasets; 
lack of feature interpretation; 
output large feature vectors



Scene Perception and Interpretation
Feature Level Object Level Global Level

(Derpanis et. al. 2012; Fei-fei and 
Perona 2005; Bosch et. al. 2008)

(Yao, et. al. 2012; Li et. al. 
2010; Heitz et. al. 2009) (Greene and Oliva 2009; Oliva and 

Torralba 2002; Lipson et al 1997)Torralba 2002; Lipson et. al. 1997)
Relies on interest 

points and surrounding 
pixels

Relies on semantic segmentation 
and object-scene co-occurrence

Identifies semantic information ;

Relies on scene features 
and entire image\frame

Identifies spatial andIdentifies task-relevant 
invariant image patches

Lacks semantic and 
ti l i f ti littl

Identifies semantic information ; 
segments (parses) image frames

Lacks depth and texture information; 
including temporal information 

Identifies spatial and 
texture information; 
provides contextual 

information
spatial information; little 
or no predictive ability
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g p
requires reconciling pixel and spatial 

coordinates and  shapes
Lacks predictive,
generative models



A h M lti l l P tiApproach: Multi-level Perception
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Video Processing and Perception
Subordinate: object-level detection of task-relevant elements feature level
Basic: categorical representation of similar components and their relationships           object level

Superordinate: highest level of abstraction of the scene environment global level
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Closed-loop Virtual Experiments in UE4

Real-time simulation and control of actors within the environment

 Logical behavior tree  C++ syntax  Built-in UE4 functions and classes
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Real-time simulation and control of actors within the environment

 Logical behavior tree  C++ syntax  Built-in UE4 functions and classes

Visual Scripting: Blueprints



C l ti l F t l l P tiConvolutional Feature-level Perception
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Resource Aware Re-identification
 Deep Anytime Person Re-ID network [Co-PI Weinberger]
 Combine features across multiple layers using skip connections
 Allows early stop and gives results instead of propagating through the network if a 

running budget is reached.
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Actor Re-ID, Association, and Tracking

 Traditional tracking uses motion info for data association, e.g., position, speed
• Suffer from difficulties in data association and performance degrades in 

d d i tcrowded environments
 Deep CNN Re-ID: integrate convolutional features to improve data association

• Applicable to other tracking frameworks [Co-PI Campbell]
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Multiple Hypothesis Tracker with Deep CNN Re-ID

 Substantial increase in robustness during crossings, close walking, occlusions
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B i l l P ti d M d liBasic-level Perception and Modeling
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GP Modeling of Optical Flow
• Optical flow: input to action recognition classifier or deep CNN
• Predict optical flow in short predictive horizons from input video frames. 
• Obtain Gaussian Process (GP) model of pixel-based optical flow• Obtain Gaussian Process (GP) model of pixel-based optical flow. 
• Predictive distribution of optical flow                                       for pixel                   
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Ego-motion Subtraction
• Extract motion model of target represented as the optical flow (OF)                    

using a moving camera
• Subtract induced optical flow caused by camera motion

],[ yxT ppp

AT ppp • Subtract induced optical flow caused by camera motion
Mobile CameraOptical Flow

AT ppp

cVy

• Compute the camera motion-induced optical flow          given the camera focal 
length     , velocity                      , rotation speed               , and the distance from the 
camera focus :
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Optical Flow Prediction
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A ti M bil P tiActive Mobile Perception
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Active Planning: Actor Re-ID, Tracking, and Following

 Goal: obtain high-quality frames of task-relevant actor (person) via mobile camera
 Unicycle (Segway) robot kinematics:
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 CNN detects and IDs actor   Labeled bounding box
 Control law u(t) drives CNN bounding box to match
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Control law, u(t), drives CNN bounding box to match
desired actor bounding box in camera pixel coordinates

22



Mobile Perception Results: Unreal Engine™

23Set Point Detection



Mobile Perception Experiments

24Set Point Detection



Ongoing and Future Work: Decentralized 
Perception, Identification, and TrackingPerception, Identification, and Tracking

 Three cameras (2 fixed, 1 mobile) with different viewpoints, orientations, and scale

25



Future Work and Acknowledgements

 Deep CNN robustness guarantees 
 Gl b l d lti l l t ti d i

Future Work:

 Global and multi-level scene representation and reasoning 
 Decentralized active camera control
 Performance analysis under variable network topologies
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Questions?Questions?

Thank you
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