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Research Goals

ONR BRC grant N00014-17-1-2175

U Decentralized perception: control a team of autonomous agents providing video coverage
and situational awareness.

U Data parsing: extract agent-level task-relevant data for high-level reasoning.

U Contested communications: reason about the scene using asynchronous decentralized
video data obtained from different viewpoints and environmental conditions.

U Active planning: plan and coordinate agent actions to actively obtain video that is task-
relevant and improves scene perception and interpretation.

Decentralized Video Surveillance via Mobile Camera Network:
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Background on Computer Vision
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Handcrafted Features

o

Statistical Models

(Marszalek et. al. 2009; Dollar et
al. 2005; Reddy and Shah 2013)

(Ning et. al. 2008; Natarajan and
Nevatia 2008; Zhang and Gong 2010)

Easy implementation;
intuitive; scale, translation,
rotation, or illumination
invariant

Interpretability; compact
model of relationships;
generate inference and

predictions

Feature effectiveness is
problem-dependent; feature
class must be chosen by user

Dependent on model design;
learning is computationally
intensive; poor generalization

Object, Action Recognition Methods

Deep Learning

Spatial stream ConvNet
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Automatic feature selection;
feature diversity and richness;
unsurpassed performance

Require large datasets;
lack of feature interpretation;
output large feature vectors

/

class |

-, 4 score |
usion|

| |

(Simonyan and Zisserman, 2014; Ji et. al.
2013; Singh et. al. 2016; Zhu et. al. 2016)
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(Derpanis et. al. 2012; Fei-fei and
Perona 2005; Bosch et. al. 2008)

Identifies task-relevant
invariant image patches

Lacks semantic and
spatial information; little
or no predictive ability

Object Level

e type: CITY

building

car car buildlng

(Yao, et. al. 2012; L. et. al.
2010; Heitz et. al. 2009)

Identifies semantic information ;
segments (parses) image frames

Lacks depth and texture information;
including temporal information
requires reconciling pixel and spatial
coordinates and shapes

Low High

Expansion

(Greene and Oliva 2009; Oliva and
Torralba 2002; Lipson et. al. 1997)

Identifies spatial and

texture information;

provides contextual
information

Lacks predictive,
generative models



Approach: Multi-level Perception




{&))) Video Processing and Perception

Subordinate: object-level detection of task-relevant elements feature level
Basic: categorical representation of similar components and their relationships object level

Superordinate: highest level of abstraction of the scene environment global level
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Closed-loop Virtual Experiments in UE4™

Real-time simulation and control of actors within the environment

e Logical behavior tree e C++ syntax e Built-in UE4 functions and classes

Level: Map_Metro_Station (Persistent)
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Convolutional Feature-level Perception
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Resource Aware Re-identification

= Deep Anytime Person Re-ID network [Co-PI Weinberger]
= Combine features across multiple layers using skip connections

= Allows early stop and gives results instead of propagating through the network if a
running budget is reached.
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{?}iﬁ Actor Re-ID, Association, and Tracking

Traditional tracking uses motion info for data association, e.g., position, speed

 Suffer from difficulties in data association and performance degrades in

crowded environments

Deep CNN Re-ID: integrate convolutional features to improve data association

» Applicable to other tracking frameworks [Co-Pl Campbell] B
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{ij? Multiple Hypothesis Tracker with Deep CNN Re-ID

= Substantial increase in robustness during crossings, close walking, occlusions
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Basic-level Perception and Modeling
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%} GP Modeling of Optical Flow

» Optical flow: input to action recognition classifier or deep CNN

» Predict optical flow in short predictive horizons from input video frames.

» Obtain Gaussian Process (GP) model of pixel-based optical flow.

 Predictive distribution of optical flow p*=(p,(T +AT), p,(T +aT)) for pixelq*(x,y,T +AT)

LISC

I_) ~ N (ﬁ, Zp + O'% Kernel function P={(p.(®) py(t))}xex,yd o
p = K(q*,Q)K(Q,Q)"P where

1 Q :{Q(X’ y’t)}XEx,er =0T
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Video Frame GP model Optical Flow

Py
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LBC%} Ego-motion Subtraction

« Extract motion model of target represented as the optical flow (OF) p- =[px, py]
using a moving camera

» Subtract induced optical flow caused by camera motion Pt =P —Pa
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 Compute the camera motion-induced optical flow Pa given the camera focal
length A , velocity V. =[X,Y,Z], rotation speed [/, 0, 4] , and the distance from the
camera focus Z
_ - A q, 94, q’+A 1 0 —sin(6)
-V P e R _ i
Te H= 16 48 @iF w; =|0 cqs(¢) sin(¢) cos(0)
b = H{R¢R9RW 0} ¢ where T iy 0 —sin(y) cos(g)cos(d)
0 L cos(y) sin(y) 0 cos(d) 0 —sin(6) 10 0 |
' R, =|-sin(y) cosw) 0| R,=[ 0 1 0 R,=|0 cos(g) sin(¢)
B B 0 0 1 sin(@) 0 cos(d) 0 —sin(¢) cos(¢)
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LBC@} Optical Flow Prediction

Actual Optical Flow
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LISC E }

Active Mobile Perception

21



Active Planning: Actor Re-ID, Tracking, and Following

= Goal: obtain high-quality frames of task-relevant actor (person) via mobile camera

= Unicycle (Segway) robot kinematics:

= CNN detects and IDs actor — Labeled bounding box

= Control law, u(t), drives CNN bounding box to match
desired actor bounding box in camera pixel coordinates
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Set Point Detection 23




Set Point Detection 24
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Ongoing and Future Work: Decentralized
Perception, Identification, and Tracking

= Three cameras (2 fixed, 1 mobile) with different viewpoints, orientations, and scale
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% } Future Work and Acknowledgements @ &356
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Future Work:
» Deep CNN robustness guarantees
» Global and multi-level scene representation and reasoning
» Decentralized active camera control
» Performance analysis under variable network topologies
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