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Distributed Optimal Control: the macroscopic state of the agents is represented 
by a restriction operator, such as a probability density function (PDF), to determine the 
optimal control laws for multi-agent systems (past work under Code 321).

Multi-agent systems: few to hundreds of systems; heterogeneous; advanced 
sensing and, possibly, communication capabilities. 

 Distributed control laws: path planning; obstacle avoidance; must meet one or 
more common goals, subject to agent constraints and dynamics.

 Derived and demonstrated DOC optimality conditions and algorithms.

Multi-scale Adaptive Control: a system of multiple autonomous dynamic systems 
that communicate and interact must adapt at different scales to cope with environmental 
changes and achieve evolving mission goals (new work under Code 321).

Adaptation: manage control multiple assets and resources in the presence of 
significant uncertainties that cannot be modeled a priori.

Multi-scale information gathering: individual assets can typically obtain high-
quality in-situ measurements such that information can be fed back through the 
sensor and used to explain performance degradation.

Introduction



Background: Distributed Optimal Control
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• Agents’ operating in Region of Interest (ROI) W    ℝ2

• Performance measured in terms of restriction operator ℘(xi,t)
• Restriction Operator  ℘: W ×ℝ→ℝ

– Time varying PDF ℘(xi,t)
– PDF-based control law ui (t)

Terminal Cost Instantaneous cost (Lagrangian)
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Year 1: Communication Control for Active Sensing
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Modeling of a spatial phenomenon, g(x), by four robots with disjoint workspaces:
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Background: Decentralized Sensing

Presenter
Presentation Notes
This is the movie for result. The left panel shows the workspace and the sensor measurement at every time step. On the right panel, it shows the expected error without communication, the nominal error with communication and the actual performance of four sensors. When there is communication between sensors, there are dotted lines connecting each pair of the sensors to indicate the communication channel. In addition, the vertical moving time line turns red. The movie plays at normal speed for the first twenty time steps, and is accelerated to four times speed after that to finish the movie in a reasonable amount of time.



Motivation: Multi-scale Adaptive Control
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• Environmental and operating conditions in situ may drastically differ those used a priori
– Off-line DOC solutions no longer optimal
– Agents must react to local information, including new tactical constraints
– Network-level controller can dispatch agents to localize gradient intensification while 
providing energy management, volume coverage, and robustness to component failure

1. Target: actual population is different from 
that assumed a priori.
2. Environment: conditions measured in situ 
are different from those forecasted by 
oceanographic models.
3. Platform: navigation settings are suboptimal, 
leading to incorrect estimates of agent position 
and/or direction.
4. Sensor: actual performance is different from 
the performance function model due to the 
above conditions, or sensor malfunctioning.



Motivation: Multi-scale Adaptive Control
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A-priori obstacle information Actual in situ obstacles

Obstacle

• Environmental and operating conditions in situ may drastically differ those used a priori
– Off-line DOC solutions no longer optimal
– Agents must react to local information, including new tactical constraints
– Network-level controller can dispatch agents to localize gradient intensification while 
providing energy management, volume coverage, and robustness to component failure



• UUV kinematics:

• Full, nonlinear dynamics

• Robot state:

•Robot Control:

Motivation: Oceanographic Conditions
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vB : measured velocity
νcx, νcy: measured ocean current x
and y velocities
gθ , gψ : control gains

Inertial position Pitch and yaw Euler angles
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A-priori current estimates:

Actual currents:
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Problem Formulation



Problem Formulation
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ith Agent

• Region of Interest    : 
• Fixed, unknown, rigid obstacles, Bi , i=1,…,r
• N agents

Mission Goal: Collectively explore and map obstacles and currents in a region of 
interest W while obtaining decentralized sensor measurements, avoiding obstacles, and 
communicating with other agents and a central station.



• Noisy sensor measurements:

•Y is a random and binary 
classification variable:

On-board Sensor Measurements

• Sensor can infer classification     within sensor range and construct  Ŷ m
jji yD },{x=

Hit/Occupied
Miss/Not Occupied

Maximum Sensor Range
dmaxSensor readings

Obstacle
B
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D = d + ν : Distance measurement
Θ = θ + υ : Angle measurement
ν ~ N(0,σd): Sample from normal distribution
υ ~ N(0, σθ): Sample from normal distribution

: radial unit vector
: unit vectors of basis in FA

Θ+Θ= sinˆcosˆˆ yxre
yx ˆ,ˆ



• : Information gain
• Y, Z: hidden discrete random variables
• M: set of all prior measurements
• λ: environmental condition parameters
• U(xi): obstacle repulsion potential
• R: control weight matrix

On-board Sensing and Communications

• Sensing goal: maximize information gain of 
future measurements to minimize uncertainty
• Mission constraints:

Bounded sensor FOV range, R
Bounded communication range, Rc

• Multiobjective Cost Function:
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Bayesian measurement model: ),|( λYZp
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Technical Approach



Hilbert Mapping

• Advantages of Hilbert mapping for multi-scale systems:
– Continuous
– Probabilistic
– Spatial correlations preserved 

• Nonlinear mapping problem ∼ binary classification task
• Approximate probability of occupancy as,

by learning vector of parameters wi online.
• Φ(x): ℝ2 → ℝn known as a lifting function or feature map
• From Mercer’s theorem, for any non-negative definite function, K(x, x’), there exists 
Φ(x) such that:

– This is known as a kernel function
–Example: Radial Basis Function Kernel:
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“Kernel Trick” in Hilbert Mapping
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• Define parameters as:                               , where μi is the dimension of the data set

• Therefore, the function to be learned from sensor data is:

• Parameters αi determined by minimizing a regularized loss function

where is a vector composed of yj from data set D, K is a kernel matrix, formed by applying 
the chosen kernel function to D, and λ is a regularization parameter (scalar).

• Negative Log Likelihood Loss function ∼ find αj by maximum likelihood estimation (MLE)
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Example: Kernel Methods
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• Agent i stores data set , j=1,…,m, obtained while navigating in ROI
•
• categorical variable

Local Hilbert Mapping
m
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Decentralized Hilbert Map

Global Hilbert Mapping:
• Compute Gaussian Mixed Model (GMM) centers from sensor data:

where M is the number of components, wk is a scalar 
mixing coefficient, and N (μ, Σ) is a bivariate normal 
distribution with mean μ, and covariance matrix Σ.

For each agent, labeled by i = 1, …, N:
• Communicate S={μk}k=1,…,M to neighbors in Rc

– Communicating S in lieu of D requires less memory
– Kernel Methods have shown to train classifiers using less training data than 
the massive amount of data originally collected by sensors

• Other agents incorporate S into own training data set and update their maps
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Decentralized Information Sharing
Assumptions:
• Connected agents share GMM centers
• Agents share information with all those 
connected to their network (comm protocol)

Rc

Communication Graph

18

Hilbert Map:



Decentralized Hilbert Map Results

Agents’ Maps at t = 4, before communication

Agents’ Maps at t = 5, after communication with all connected agents
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• Agents gain information in regions far outside their FOV
• Agents rely on local map when communications are unavailable

Agent 1: Agent 2: Agent 3: Agent 4:



• Information value of future sensor measurements is used here for planning
• Expected entropy reduction: reduction in uncertainty caused by measurement Zk

• All terms obtained from Bayesian model:

Hilbert Map Information Value

),|(),|()( 1 λλ kkk ZHEZYHZH −=∆ −

∑
∈

−

−
− ==

==

Yy
k

k
k MyYPyYzP

MYPYzPMzZYP
),|(),|(

),|(),|(),,|(
1

1
1 λλ

λλλ

Measurement model Hilbert Map

∑
∈

−−

−−
− ==

=

Yy
kk

kk
k MyYPyYZP

MYPYZPMYP
),|(),|(

),|(),|(),|(
21

21
1 λλ

λλλ

Measurement model Hilbert Map

Conditional 
Entropy

Expected Entropy after measurement Zk

• H(‧): Entropy
•Y, Z: discrete random variables 
representing occupancy of an area and 
measurements at time k
•M = {Z1 … Zk}: set of all previous 
measurements
• λ: environmental condition parameters
• }1 ,0{, ∈kZY
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• Information Roadmap (IRM) Method [Zhang, Ferrari, ‘09]
- Sample locations in W from cost function and uniformly around the agent
- Connect nodes that go through “safe” areas based on Hilbert Map
- Plan path over graph to nodes with highest information value

Agent Path Planning

Agent Position
Roadmap node

Valid edges

Invalid edges

Probability of O
ccupancy Roadmap Graph

21
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• Nodes for the information roadmap are sampled from potential information function.
• Potential information function is created from map of information value (generated 
from Hilbert map) and obstacle repulsive potential.
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Black areas are very 
large penalties

Hilbert Map

Information Value

Cost Function
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Simulation Results



Centralized Information-driven Planning
C
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200 Agents
FOV = 1.5 km
Centralized fusion

• Agents all share information and compute a centralized Hilbert Map
• Each agent plans own path using information roadmap method
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Agent Information-driven Planning 
without Communications
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• One agent exploring alone
• Unable to map large ROI in a reasonable amount of time
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1 Agent
FOV = 0.75 km
No fusion
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FOV = 0.75 km; N = 200 agents
Communication Range (Rc) = 4.5 km

• Two sample agents in a network of communicating with neighbors in range (Rc)
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Agent Information-driven Planning 
with Communications



Decentralized Communication 
Results
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200 Agents, only yellow agents (50%) communicate
FOV = 0.75 km
Communication Range = 4.5 km

• Connected agents (yellow) achieve higher information value and avoid regions 
already explored by others.

• Disconnected (blue) agents “look lost” and converge to regions already mapped  
with high confidence.
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• A multiscale dynamical system with communications can far outperforms a single 
agent in distributed sensing tasks
• Next question: how does unmanaged information propagating through network affect 
system stability?
• Agent planning: respond both to the network objectives (based on global data set)  
vs. local information (unavailable to the network controller due to comm. delays).



Multi-Scale Adaptive Optimal Control
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Optimal value function V*:

Value-Determination Operation:

• Adaptive distributed optimal control:
- Agents make decisions based on in situ conditions and global information
- Value function V, defined in terms of discrete ℘k, at time k and control law C(℘k):

• Control law Cl and Value function Vl are iteratively improved online, where l is the iteration
• ℘k agent density at discrete time k
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Multi-scale Adaptive Optimal Control:

Recurrent relations for policy improvement and value iteration

Decentralized Hilbert mapping for information fusion

Communication protocols for efficient map-information spreading 

 Information-driven roadmap results

Future Work:

Develop adaptive DOC for effective multi-scale information gathering

Stability analysis in the presence of delayed information propagation

Robustness and performance analysis

 Demonstrate adaptive DOC for changing:

1. Environmental and operating conditions

2. Target conditions; 3. Platform/sensor conditions.

Summary and Conclusions
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Thank you

Questions?
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