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For DFR:

Introduction and Motivation - Map the distribution data sets X; and into Hx as ;.

This paper presents a multi-kernel probability distribution regression methodology that uses + Combine ;he ?Sg];lbutlon embedding p; and yim as a new term
multi-layer reproducing kernel Hilbert space (RKHS) mappings to perform probability distri- Vim = [“’i Y iam] € Hx DRW.

bution to real and probability distribution to function regressions. The approach maps the » Detfine new kernel Ky and the corresponding RKHS s,

distributions into RKHS by distribution embeddings. Then based on this RKHS, a multi-layer Wi — Vi)' 2 Wi — Vi)

(8)

ICQ(VZ"m, Vj,n) — €XP

RKHS is constructed, within which the multi-kernel distribution regression can be implemented 2
using an existing kernel regression algorithm, such as kernel recursive least squares (KRLS).
The proposed algorithms are demonstrated through numerical simulations on synthetic data sets - Approximate the mapping G using kernel methods in RKHS H, with input signal vy, ,,, and

and compared with an existing algorithm. The results show that the proposed algorithm can desired signal zy, ,, € R", such as kernel adaptive filters.
outperform the exiting algorithm.

Multi-Kernel Distribution to Real Regression based on KRLS

Formulation of Probability Distribution Regression Problems Multi-Kernel Distribution to Real Regression based on KRLS

Like the standard KRLS algorithm, the following cost function is minimized to learn the DRR

- Distribution to Real Regression (DRR): defined in (1) from data sets D,
_ _ T 2
zp = F(Py) +ep, k=1,....T (1) Jprr =min L{i 2 — (wWr, Kr(pen, )y, + A HwFHi;] 9)
- Distribution to Function Regression (DFR): where ) is a regularization factor. Then, the feature weight wr can be approximated at the kth

fk:g(Pk)‘|‘€ka k=1,...,T (2) iteration by

where P, € Z is a probability distribution defined in the probability space Z, z; € R"™ is the
corresponding output response, and €; is a zero mean Gaussian noise variable; f. € IF is the
function defined in a function space [, €, is a zero mean (Gaussian process.

DRR operator F: 7 +— R™ DFR operator G: Z—F

Training Data sets:

wr = P, [(I)g(]:)]{ + )\Ik]_l = (I)kQ“(k)Zk (10)

where I is a k X k identity matrix, the feature matrices ®, = [ICr(pt1, ), ..., Kr(pr, )] and

. . T
desired matrices Zy = |z1,...,2;] , and

Multi-Kernel Distribution to Function Regression based on KRLS Similarly, the
following cost function is minimized to learn the DFR defined in (4) from data sets Dg,

- Distribution P is Oapproxmolated by usmg data set Xy = {Xp1, .-, Xk.sy - » Xi N, Topn — n&ign {él ]‘é |2 — Fo( Py Yien) H2 + A ngHig] - (11)
- DDR operator F is approximated by using data set Dr = {(X},21), ..., (X, z7)} | e
| | | | we can approximate the feature weight wg at the kth by
- Output function f is approximated by using data set Vi = {(Y&.1,2Zk1)s - - -» (Yiar, Zkar) } »
where Zg = fi(Yim) wg = Yy [Kk + AI(!@M)] Vi = Y.Q(k)Vy, (12)
- DFR operator G is approximated by using data set Dg = {(X1, 1), ..., (X, Vr)}. where input feature matrices Wy = [Kg(vr1,-), ..., Kg(Wiar, -)| and Y = [Wy, ... W], and
. . T
Modified DFR operator: the desired matrices Uy = |z 1, . . . ,zij]T, V. = [U}g, . ,Uﬂ cand Ky, = Y1,
According to (2)
Zim = G(Pu)(Yem) + €1(Ykm) (3) Simulations and Results
Define new DFR operator G'( Py, Yim) = G(Pr)(Ykm), then Simulation settings
Zim = G (P, Yiem) + €}, (4) - the initial agent location distributions P, k = 1,2, ... on £n-coordinate plane., generated by
where the evaluation of €(yy. ) is denoted by €, which is a zero mean Gaussian noise. 2D Mixture Gaussian distributions with two equivalently weighted components
Goal: - The means |p¢ ;, ty4], @ = 1,2, and covariance matrices ¥; = diag(|o¢;, 0y4]), © = 1,2 are

- Learn the operator F by using data set Dg selected randomly,

. generate NVy..in training data sets, V,qiq = 25 validation data sets, and Ny = 50 testing

data sets.
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- Learn the operator G’ by using data set Dg instead of the operator G

Multi-Kernel Distribution Regressions Methodology

Distribution Embeddings: Given a random variable (R.V.) X € R"™ associated with a

distribution Px and a corresponding Probability Density Function (PDF) py, an embedding pex
in RKHS can be defined as,

0.08 5

px = Ex[kx(X, )] = [ px(x)kx(x, -)d(x), (5) 006 _ »
where Ex|-| indicates the expectation operator, kx(-, ) is a kernel defined on R" x R™ asso- ZZ: E | 0.02
ciated with RKHS Hyx. The distribution embedding px is also in the RKHS Hx, provided _ .
Ex|kx(X, X)|] < oo. Its empirical estimate is ' ¢ (km) ' * £ (km) °

flx = 1 ]g kx (X ) (6) Figure 2: Examples of goal distribution and testing distributions generated by Gaussian mixture in DR problem.
N n=1 s

where Dy = {x1,...,X,} is a training set that is assumed to have been drawn 4.i.d from Py. Experiment of MKDDR-KRLS Experiment of MKDFR-KRLS

With a characteristic kernel, the mapping from distribution Px to the distribution embedding
px € Hx is injective. A tamous characteristic kernel is the Gaussian kernel, which is used in
this paper to specify the kernel function kx(-, -). | BVKORRRLS Output functions NMSE
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0.035 { { ‘ { { Table 1: Regression performance results

Kernel Design and Multi-Layer RKHS éo.c;w: Gradient g¢(€,n) 0.0990 + 0.0616
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Figure 3: Pel."formance comparison between MKDRR-KRLS and . Bach sample set X} has
Zk.m KKDRR algorithms
p r o Nsample = 500 samples.
}im il rpe(€,m)po(€,n)dEdn  Nirain = D00 training distribution
Des(Pi||Py) = —log ) , ‘ ]
- \DR(E m)dEdn 1 p3(€, m)dEdn SELS Al USEH.
\ Y, (13)

Figure 1: The frameworks of the multi-layer RKHS to implement MKDRR (red arrows) and MKDFR (blue arrows)
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