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Introduction and Motivation

This paper presents a multi-kernel probability distribution regression methodology that uses
multi-layer reproducing kernel Hilbert space (RKHS) mappings to perform probability distri-
bution to real and probability distribution to function regressions. The approach maps the
distributions into RKHS by distribution embeddings. Then based on this RKHS, a multi-layer
RKHS is constructed, within which the multi-kernel distribution regression can be implemented
using an existing kernel regression algorithm, such as kernel recursive least squares (KRLS).
The proposed algorithms are demonstrated through numerical simulations on synthetic data sets
and compared with an existing algorithm. The results show that the proposed algorithm can
outperform the exiting algorithm.

Formulation of Probability Distribution Regression Problems

•Distribution to Real Regression (DRR):
zk = F(Pk) + εk, k = 1, . . . , T (1)

•Distribution to Function Regression (DFR):
fk = G(Pk) + εk, k = 1, . . . , T (2)

where Pk ∈ I is a probability distribution defined in the probability space I, zk ∈ Rnz is the
corresponding output response, and εk is a zero mean Gaussian noise variable; fk ∈ F is the
function defined in a function space F, εk is a zero mean Gaussian process.

DRR operator F : I 7→ Rnz DFR operator G : I 7→ F
Training Data sets:
• Distribution Pk is approximated by using data set Xk = {xk,1, . . . ,xk,s, . . . ,xk,Nk

}
• DDR operator F is approximated by using data set DF = {(X1, z1), . . . , (XT , zT )}
• Output function fk is approximated by using data set Yk = {(yk,1, zk,1), . . . , (yk,M , zk,M)}
where zk,m = fk(yk,m)

• DFR operator G is approximated by using data set DG = {(X1,Y1), . . . , (XT ,YT )}.
Modified DFR operator:
According to (2)

zk,m = G(Pk)(yk,m) + εk(yk,m) (3)

Define new DFR operator G ′(Pk,yk,m) = G(Pk)(yk,m), then
zk,m = G ′(Pk,yk,m) + ε′k (4)

where the evaluation of ε(yk,m) is denoted by ε′k, which is a zero mean Gaussian noise.
Goal:
• Learn the operator F by using data set DF
• Learn the operator G ′ by using data set DG instead of the operator G

Multi-Kernel Distribution Regressions Methodology

Distribution Embeddings: Given a random variable (R.V.) X ∈ Rnx associated with a
distribution PX and a corresponding Probability Density Function (PDF) pX, an embedding µX
in RKHS can be defined as,

µX := EX[kX(X, ·)] = ∫
pX(x)kX(x, ·)d(x), (5)

where EX[·] indicates the expectation operator, kX(·, ·) is a kernel defined on Rnx × Rnx asso-
ciated with RKHS HX. The distribution embedding µX is also in the RKHS HX, provided
EX[kX(X,X)] <∞. Its empirical estimate is

µ̂X = 1
N

N∑
n=1

kX(xn, ·) (6)

where DX = {x1, . . . ,xn} is a training set that is assumed to have been drawn i.i.d from PX.
With a characteristic kernel, the mapping from distribution PX to the distribution embedding
µX ∈ HX is injective. A famous characteristic kernel is the Gaussian kernel, which is used in
this paper to specify the kernel function kX(·, ·).

Kernel Design and Multi-Layer RKHS

Figure 1: The frameworks of the multi-layer RKHS to implement MKDRR (red arrows) and MKDFR (blue arrows)

For DDR:
• Map the distribution data sets Xi and Xj, i, j = 1, . . . , T , into HX as µi, µj, respectively.
• Define new kernel K1 and the corresponding RKHS H1,

K1(µi,µj) = exp
−
D(µi,µj)

2σ2
µ

 (7)

where D(µi,µj) = ‖µi − µj‖2
HX

• Approximate the mapping F using kernel methods in RKHS H1 with input signal µk and
desired signal zk ∈ Rnz, such as kernel adaptive filters.

For DFR:
• Map the distribution data sets Xi and into HX as µi.
• Combine the distribution embedding µi and yi,m as a new term
νi,m =

µTi ,yTi,m
T ∈ HX ⊕ Rny.

• Define new kernel K2 and the corresponding RKHS H2,

K2(νi,m,νj,n) = exp
−

(νi,m − νj,n)TΣ−1
XY (νi,m − νj,n)

2

 (8)
•

• Approximate the mapping G using kernel methods in RKHS H2 with input signal νk,m and
desired signal zk,m ∈ Rnz, such as kernel adaptive filters.

Multi-Kernel Distribution to Real Regression based on KRLS

Multi-Kernel Distribution to Real Regression based on KRLS
Like the standard KRLS algorithm, the following cost function is minimized to learn the DRR
defined in (1) from data sets DF ,

JDRR =min
ωF

 T∑
k=1

∥∥∥∥∥∥zk − 〈ωF ,KF(µk, ·)〉HF
∥∥∥∥∥∥
2 + λ ‖ωF‖2

HF

 (9)
where λ is a regularization factor. Then, the feature weight ωF can be approximated at the kth
iteration by

ωF = Φk

ΦT
kΦk + λIk

−1 Zk = ΦkQµ(k)Zk (10)

where Ik is a k × k identity matrix, the feature matrices Φk = [KF(µ1, ·), . . . ,KF(µk, ·)] and
desired matrices Zk = [z1, . . . , zk]T , and
Multi-Kernel Distribution to Function Regression based on KRLS Similarly, the
following cost function is minimized to learn the DFR defined in (4) from data sets DG,

JDFR = min
ωG

 T∑
k=1

M∑
m=1
‖zk,m −FG(Pk,yk,m)‖2 + λ ‖ωG‖2

HG

 . (11)
we can approximate the feature weight ωG at the kth by

ωG = Υk

Kk + λI(kM)
−1 Vk = ΥkQ(k)Vk, (12)

where input feature matrices Ψk = [KG(νk,1, ·), . . . ,KG(νk,M , ·)] and Υk = [Ψ1, . . . ,Ψk], and
the desired matrices Uk = [zk,1, . . . , zk,M ]T , Vk =

UT
k , . . . ,UT

k

T , and Kk = ΥT
kΥk.

Simulations and Results

Simulation settings
• the initial agent location distributions Pk, k = 1, 2, . . . on ξη-coordinate plane., generated by
2D Mixture Gaussian distributions with two equivalently weighted components

• The means [µξ,i, µη,i], i = 1, 2, and covariance matrices Σi = diag([σξ,i, ση,i]), i = 1, 2 are
selected randomly,

• generate Ntrain training data sets, Nvalid = 25 validation data sets, and Ntest = 50 testing
data sets.
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Figure 2: Examples of goal distribution and testing distributions generated by Gaussian mixture in DR problem.

Experiment of MKDDR-KRLS
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Figure 3: Performance comparison between MKDRR-KRLS and
KKDRR algorithms

DCS(Pk||P0) = − log
∫∫ pk(ξ, η)p0(ξ, η)dξdη√√√√∫∫ p2
k(ξ, η)dξdη ∫∫ p2

0(ξ, η)dξdη
,

(13)

Experiment of MKDFR-KRLS

Table 1: Regression performance results

Output functions NMSE
CDF F (ξ, η) 0.0030± 0.0024

Gradient gξ(ξ, η) 0.0990± 0.0616
Gradient gη(ξ, η) 0.0974± 0.0623

NMSE =
∑M
m=1 ‖zk,m − ẑk,m‖2

∑M
m=1 ‖zk,m‖2 (14)

• Each sample set Xk has
Nsample = 500 samples.

•Ntrain = 500 training distribution
sets are used.
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