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ABSTRACT

The focus of robotics, mechanical engineering, and computer science research

on human-robot teams requires evaluating software and algorithms in com-

plex real-world scenarios that are challenging to replicate in laboratory experi-

ments/environments. Conversely, conducting field experiments in natural set-

tings lacks the necessary level of detailed information for comparing and vali-

dating performance. Additionally, using pre-recorded real-world datasets has

limitations in assessing the effectiveness of perception, control, and decision

strategies. Moreover, the cost and logistical challenges of involving a large num-

ber of humans or robots in experiments make it impractical, especially when

factors such as environmental conditions disrupt testing. To address these is-

sues, this work presents a cyber-physical framework that serves as a testbed for

conducting such research. The presented framework combines humans along-

side virtual and real robots in simulated photo-realistic environments using

motion capture technology, virtual reality (VR), wearable sensors, and physics-

based simulations for the robot platforms. This creates an extended reality (XR)

testbed where humans and real robots can experience virtual worlds with real-

time visual feedback and interaction. The movements and actions made by the

real human/robot agents are transferred from the physical world or laboratory

setting to a synthetic virtual environment using VR coupled with 3D body track-

ing and motion capture systems. This process generates avatars that replicate

the behavior of real agents in real-time and enable them to receive feedback from

the virtual world. Synthetic environments created such that they narrow the gap

between reality and simulation, allowing the inclusion of autonomous agents



with multi-modal sensor suites. The potential of the framework is demonstrated

through three experiments which showcase interactions between agents in dif-

ferent domains, leveraging the advantages of both real-world and simulation

experimentation to complement and enhance each other.
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CHAPTER 1

INTRODUCTION AND BACKGROUND

1.1 Introduction

Simulation systems have played a crucial role in the advancement of robotic

vehicles for a considerable period. These systems not only enable researchers

to swiftly prototype and showcase their concepts, but also provide engineers

with the ability to detect and address errors in the early stages of development.

Despite the effectiveness of these simulators in expediting the development pro-

cess, a level of skepticism continues to be maintained by some researchers to-

wards outcomes produced within these simulation systems. This skepticism

arises due to the inherent nature of simulation systems, which inevitably devi-

ates from reality to some extent, as they are abstractions of the real world. The

skepticism surrounding results solely derived from simulation studies is encap-

sulated in Rodney Brooks’ famous quote from 1993 which essentially states that

experiments conducted in simulations are doomed to succeed primarily since

they can never be made sufficiently realistic [4].

In spite of the skepticism surrounding simulation results, the research com-

munity has witnessed the emergence of several trends in recent years that have

compelled researchers to enhance simulation systems for a variety of reasons.

One significant trend driving the development of more realistic simulators is

the rise of data-driven based algorithms in the domain of robotics, particularly

the approaches that are based on methods of machine learning (ML) which ne-

cessitate vast amounts of data. Simulation systems, while generating abundant

data, also label this data which is essential for training these ML-based algo-
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rithms. They serve as a valuable resource by providing a safe and controlled

environment for training reinforcement learning methods as demonstrated in

[38]. The growing prominence of data-driven algorithmic methods has created

a pressing need for the advancement of simulation systems.

Researchers recognize that in order to generate accurate and reliable results,

simulations must closely mimic the intricacies of the real world. As a result,

there is a concerted effort to develop simulation systems that accurately cap-

ture the complexities of the physical environment, encompassing factors such

as sensor noise, environmental variability, and complex interactions between

agents and their surroundings. This driving trend has propelled the research

community to explore innovative approaches and techniques to improve the

realism and fidelity of simulation systems. The focus is on developing better

models, incorporating more accurate physics-based simulations, and refining

the representation of objects and agents in the virtual environment. By align-

ing simulations more closely with reality, researchers can generate data that is

not only extensive but also more representative of real-world scenarios, thereby

enhancing the effectiveness of data-driven algorithms.

1.2 Literature Review

Recent years have witnessed the emergence of several enabling trends that have

facilitated the development of more realistic and enhanced simulation systems.

The primary trend responsible for this growth is the advancement in computing

resources that enable realistic rendering. The rapid progress specifically in 3D

graphics rendering engines and in game engine technology as a whole has un-
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locked access to advanced features like real-time reflections, improved material

characteristics, sophisticated illumination, and volumetric lighting through de-

ferred rendering pipelines. Notably, commercially available software packages

such as Unity [39] and Unreal Engine (UE™) [14] have matured to the point

where they can be used for rendering high-fidelity environments in applica-

tions over and above video games, including robotics simulation. Additionally,

through optimized configurations for real-time ray tracing along with greater

transistor density, the latest generation of graphics processors have significantly

improved capabilities. Also, the computation cores incorporated in these pro-

cessors leverage machine learning techniques, such as training with real envi-

ronment images to generate realistic renderings [7]. This trend presents an op-

portunity to leverage improved hardware and software resources that achieve

more realistic sensor simulations.

Figure 1.1: Examples of simulators developed using 3D graphics render-
ing game engines. a) HoloOcean [28] developed using UE™ for
underwater robotics. b) RCareWorld [45] developed using
Unity™ for caregiving robotics.

The widespread adoption of motion capture facilities in robotics research can

be credited as the secondary enabling trend for the growth of these advanced

simulation systems. These facilities utilize various technologies, including laser

tracking, infrared cameras, and ultra-wideband radio, to enable precise tracking
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of both agents—humans as well as robots. This trend offers the opportunity to

combine the safety, efficiency, and flexibility of simulation with the physical dy-

namics and agent behavior observed in the real world by integrating real-time

behavior and motion of robots and humans into the test environemnt. This in-

tegration of motion capture technologies empowers researchers to simulate the

actions and responses of robotic vehicles and humans with greater authenticity

and realism, resulting in more accurate and representative simulation outcomes.

Traditionally, simulation systems have utilized physics-based ”models” us-

ing ordinary or partial differential equations to replicate the behavior of the var-

ious agents and their environments, encompassing their sensory inputs, move-

ment, and environmental adaptations. This research employs the concept of

VR system to incorporate a variety of features ranging from human behavior or

agent dynamics to inertial sensors in a realistic fashion into the simulation envi-

ronment; thus leveraging data to enhance the realism of simulations. Instead of

modeling these effects, the robot agents are placed within motion-capture facil-

ities. By capturing the real-time poses and configurations of these agents, cor-

responding avatars are created within the simulation environment. The propri-

oceptive measurements for each autonomous robot is acquired through the use

of on-board sensors such as odometers and inertial measurement units, while

the exteroceptive sensors are rendered photorealistically in real-time. Addition-

ally, the human behavior observed by the vehicles is generated by real humans

reacting to the simulation through the use of VR. In essence, the vehicles op-

erating within the cyber-physical testbed experience human behavior, genuine

dynamics, photorealistic synthetic exteroceptive sensor measurements, and in-

ertial sensing.
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Conventional systems simulate various agents and their environment typi-

cally through a physics engine that uses a model. While the behavior of a gen-

eral vehicle or actor may be accurately represented by these models, they are

inadequate for ensuring simulation results are effectively translated to the real

world. Complex factors such as human behavior and vehicle dynamics (e.g., vi-

brations and unsteady aerodynamics) can have a significant impact on results,

but are difficult to be captured accurately within a physics-based model. Pop-

ular physics engines, commonly implemented in recent research, are described

in [10]. Robotics simulators utilize a rendering engine for graphics in conjunc-

tion with a physics engine to generate exteroceptive sensor data. Gazebo, often

combined with the Robot Operating System (ROS) to facilitate hardware-in-the-

loop simulation, is one of the most commonly used simulation platforms which

allows users to choose from various underlying engines [20], [23]. However,

the Gazebo simulator generally lacks the ability to render photorealistic scenes.

For unmanned aerial vehicle simulation, two popular simulators built on the

Gazebo platform are the RotorS [12] and the Hector Quadrotor package [24].

While these simulators include vehicle dynamics and exteroceptive sensor mod-

els, they do not have the potential to render photorealistic camera streams. On

the other hand, AI2-Thors [21] and Habitat AI [31] generate environments that

are highly photorealistic by using photogrammetry but primarily focus on in-

door mobile robotic platforms or agents with simpler dynamics models. AirSim

allows for rendering photorealistic camera streams from autonomous robots

and is designed specifically on the Unreal rendering game engine [33]. How-

ever, when it comes to robot dynamics and inertial measurements, it still faces

limitations inherent to typical physics engines [22]. Flightmare [36] addresses

these limitations by enabling users the to flexibly utilize custom physics engines
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or real-world flight data to overcome these shortcomings.

The emergence of data-driven algorithms in autonomous robotics has cre-

ated a demand for extensive labeled datasets. Simulation presents an alternative

to gathering experimental data, offering numerous advantages such as cost effi-

ciency, safety, repeatability, and the ability to generate an essentially unlimited

diversity as well as quantity of data. In recent years, various synthetic or vir-

tual datasets have been introduced in the literature. For example, datasets like

Virtual KITTI [13] and Synthia [30] utilize Unity for photorealistic rendering of

urban environments, while others [42] leverage the UE™ platform to generate

data for visual inertial odometry. Similar techniques using rendering engines

have been employed in different visual SLAM datasets, where the quality of

rendered environments is enhanced by the use of point cloud data or 3D images

[42], [37]. A large-scale point cloud is used to generate a fine-grained dataset in

the Stanford BuildingParser [2] while Matterport3D [6], for instance, utilizes the

Matterport 3D camera sensor [32]. ICL-NUIM [18] provides synthetic render-

ings of indoor environments based on pre-recorded handheld trajectories. Real-

world ground truth and inertial measurements of a quadcopter captured by

motion capture technology are incorporated in the Blackbird Dataset [1], along

with photorealistic camera imagery rendered in FlightGoggles (shown in figure

1.2). The availability of FlightGoggles [17] as an open-source platform, along

with its photorealistic assets, allows users to not only easily generate additional

data but also includes real-time photorealistic renders based on real-world ve-

hicles and actors.
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Figure 1.2: FlightGoggles is a high-fidelity simulator developed primarily
for UAVs (highlighted in the above images) with limited capa-
bilities for human-robot interaction.

1.3 Motivation and Contribution

Human autonomy teams (HATs) can harness the strengths and mitigate the de-

ficiencies of different agents. Robots or autonomous agents posses the ability

to process data at frequencies of the magnitude of gigahertz (GHz), integrate a

vast variety of sensor modalities, operate in complex/dangerous environment

that would be hazardous for humans to venture in, and they have a distinct,

directional and bounded field-of-view. On the other hand, while humans have

limited data processing capacity, they possess exhaustive field experience and

domain knowledge and have a comprehensive interpretation of complex mis-

sion objectives that is extremely difficult to be embodied within an autonomous

agent. With the increasing integration of intelligent machines and autonomous

robots in collaborative human teams, extensive research has been conducted to

explore efficient methods of task allocation, human-robot communication, and

multi-robot coordination [26], [15]. In this context, FlightGoggles has emerged

as a powerful tool capable of integrating not only simulated and real robots

but also humans within a desired computing and rendering framework. How-
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ever, FlightGoggles has faced limitations when it comes to creating and testing

intricate interactions and perception between robot agents and humans across

different realities. This means that the platform has not been fully equipped

to handle complex scenarios where human and robot agents exist in various

virtual or physical environments. Addressing this gap in capabilities is crucial

for advancing the development of autonomous systems that seamlessly inter-

act and collaborate with humans in diverse contexts. By enabling the creation

and subsequent evaluation of intricate interactions and perception, researchers

can gain deeper insights into the dynamics and challenges of human-robot col-

laboration, paving the way for more efficient and effective integration of au-

tonomous robots into human teams.

Figure 1.3: Example of an HAT where humans and robots collaborate in
an engine assembly task [40].

At its core, the aim of the presented research is to provide a cutting-edge

framework/testbed for simulation that enables the study of complex, multi-

modal human-robot and multi-robot interactions in real-time. The proposed

framework lies at the intersection of three fundamental techniques used in mod-

ern robotics research: i) Active perception which studies modeling and control
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strategies for perception along with the interaction between them for a given

purpose, ii) Mobile sensing that revolves around the idea of active/passive

sensing modalities which can move around in the workspace, and iii) VR which

simulates experience that immerses user in a synthetic virtual world. The cyber-

physical facility developed in this work, unlike traditional simulation systems,

offers a unique blend of data-driven exteroceptive sensor simulation and real

physics. A combination of various proprioceptive and exteroceptive sensors

are installed on both real-world agents as well as their virtual counterparts in

order to facilitate complex feedback and further analysis. Building upon previ-

ous advancements in simulation platforms for robotics, this work introduces a

unique cyber-physical environment. In this environment, customized physical

laboratory environments are seamlessly merged with intricate virtual worlds

with their agents in it. The primary objective of this research is to showcase a

testbed for perception-driven intelligent interactions among simulated and real

human-robot teams. The main contribution of the research presented lies in the

development of a novel framework, a framework that integrates embedded sys-

tems design with VR technology and graphics tools to facilitate photo-realistic,

real-time, and safe multi-agent interactions. In order to support these interac-

tions while simultaneously enabling effective perception, planning, and control

of various agents, innovative hardware and software integration tools are de-

signed and developed. Moreover, the concept presented in this thesis demon-

strates the ability to support not only perception-based control but also commu-

nication between virtual and real agents. The work also showcases its capability

to test interactions as well as collaboration within HATs in challenging and real-

istic test environments. By providing this advanced framework, this thesis con-

tributes to the advancement of research in decision-making and human-robot
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collaboration, particularly in the context of cyber-physical environments.

1.4 Thesis Outline

The organization of the thesis is as follows. After providing an introduction

about the thesis alongside related work and motivation in Chapter 1, Chapter

2 describes the mathematical formulation of the framework developed in this

work. Chapter 3 forms the core of this thesis as it provides a detailed descrip-

tion about the system setup and explains the simulation environment, human

and robot interfaces, and perception, planning, and control. In Chapter 4, we

discuss the various experiments carried out in the system to demonstrate its ca-

pabilities and show their results. Chapter 5 summarizes the work carried out by

providing a conclusion based on the experiments carried out in chapter 4 and

also gives a glimpse into the future work.
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CHAPTER 2

PROBLEM FORMULATION AND MATHEMATICAL PRELIMINARIES

The research presented in this thesis focuses on the development of a unique

cyber-physical framework for conducting research on HATs that include a num-

ber of collaborative agents, operating and interacting within simulated virtual

worlds as well as across physical/laboratory workspace. The physical labora-

tory where the human and autonomous agents operate is denoted by the real

workspaceW ⊂ R3 (shown in figure 2.1). Accordingly, the simulated environ-

ment or virtual workspace created using UE™ is denoted as U ⊂ R3. The var-

ious agents present in the testbed are categorized into the following four types

depending on their fundamental agent-environment interactions: real agents,

virtual agents, avatars, and real agents with XR. From this categorization, virtual

agents and real agents operate and sense solely in U and W respectively. On

the other hand, avatars sense or perceive the environment in U while simulta-

neously transmitting this sensory information to their physical world counter-

parts inW, namely real agents with XR. The virutal avatars of the real agents

with XR are kinematically to them and are thus teleoperated by the real agents

with XR. Hence, the real agents in XR see what their avatars see, and accord-

ingly react to their perception and by flow of control their resulting states are

relayed, in real-time, to their avatars in the virtual world. The perception and

the corresponding visual interactions of the agent avatars and virtual agents are

restricted to the virtual workspace U. An example of the types of agents in

HATs is shown in figure 2.2.

We assume that the index sets of robots and humans operating inW is de-

noted by R and H, where each robot is associated with an index i ∈ R while each

11



Figure 2.1: Physical workspace in which the real-world agents (humans
and robots) coexist.

human is associated with an index j ∈ H. Similarly, for the robots and humans

operating in U, the index set is denoted by P and Q respectively and i ∈ P and

j ∈ Q associates an index for each robot and human respectively. For brevity in

notation, it is assumed that the avatars of the real agents with XR assume the

same indices in P and Q as their real-world counterparts in R and H respectively.

Thus, it can be confirmed that the indices of real humans with XR belong to H∩Q

while the indices of real robots with XR belong to R∩P. This further leads to the

property that R ∪ P denotes the index set of all robots in the HAT while H ∪ Q

denotes the same for all humans present in the cyber-physical framework.
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Figure 2.2: Real and virtual agents in the facility designed based on the
proposed framework, where real agents with XR are digitally
coupled with virtual avatars in UE™.

The field of view (FOV) of robot i ∈ R with rigid-body geometryAi ⊂ W and

of human j ∈ H with deformable geometry H j ⊂ W are denoted as Si and S j

which are defined with respect to the body fixed reference frames, FA and FH ,

attached to their respective geometries, defined relative to the inertial frame FW

embedded inW. The geometries of agents inU and their corresponding FOVs

and body-fixed frame of references can be defined accordingly. There exists a

transformation, denoted by T, fromW toU, whose inverse, represented by T−1,

is assumed to exist and known a priori. In this research, the robot agents used

to showcase the abilities of the proposed framework are unmanned ground ve-

hicles (UGVs), however, the presented architecture can be extended easily to

incorporate other agents such as autonomous aerial vehicles (AAVs) and un-

manned underwater vehicles (UUVs). It is also assumed that the robot agents

and humans present inW and U move on the ground plane, aligned with the
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Figure 2.3: Configurations of a human and robot agent in the real
workspace (left) and their corresponding avatars in the virtual
workspace (right).

co-ordinate plane of the inertial frames FW and FU and are embedded in W

and U respectively. The configurations of robot and human inW are denoted

by qi, i ∈ R and s j, j ∈ H while those operating in theU are denoted by qi, i ∈ P

and s j, j ∈ Q respectively. In detail, the state vector qi denotes the configuration

of a robot i ∈ R ∪ P and is defined as qi = [xi, yi, θi]. In a similar manner, the

pose of human j is defined by the facing direction and position which can be

represented by s j = [x j, y j, θ j]. Using a motion capture system, the configuration

of robot agents that are operating in W can be estimated while the configura-

tion of humans inW is obtained through VR tracking. On the other hand, the

configurations of agents operating in U are known accurately inside the simu-

lation environment in UE™. For every robot i ∈ R∩ P with configuration qi, it is

assumed that the dynamics are given by the unicycle motion model [11].

q̇i =


ẋi

ẏi

θ̇i

 =

vi cos θi

vi sin θi

ωi

 = f(qi,ui), (2.1)
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where the control vector for the robot, ui = [vi,wi]T ∈ R2, includes the linear

velocity vi and the angular velocity wi. The aforementioned notations can be

clearly visualized in figure 2.3.
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CHAPTER 3

SYSTEM SETUP AND METHODOLOGY

Within the cyber-physical framework presented in this research, there ex-

ists communication and various interactions between real humans and phys-

ical robots with simulated agents as well as avatars in photorealistic virtual

environments (explained in detail under section 3.1). Studying different sen-

sor modalities in pressure-induced environments can help to seamlessly inter-

face robot capabilities with humans for both heterogeneous and homogeneous

teams in decentralized planning. For the various agents present in the testbed,

the senses are collocated in these virtual environments (shown in figure 3.1),

while the framework supports their individual operation in completely distant

or different workspaces altogether. In order to achieve this functionality, we

leverage the integrative cyber-physical interfaces proposed in this research (re-

fer to sections 3.2-3.4) which in turn facilitate collaborative decision-making.

These cyber-physical environments, through the aforementioned sophisticated

integration, act as a medium for safe as well as realistic inter-agent and agent-

environment interactions. It allows for modelling, analyzing, and leveraging

these different interactions for a variety of applications while, at the same time,

avoiding the risks associated with testing robots in the real world like collisions

with obstacles and safety around humans. The proposed framework imple-

ments the 3D graphics development software, UE™, to develop virtual envi-

ronments. This gives researchers the pliability to test algorithms and collect

data in a wide variety of environments like cities, subways, oceans, and offices

under varying weather and lighting conditions and with a diverse set of user-

defined static and dynamic obstacles which can be easily incorporated. The vir-

tual environment can be populated with completely virtual humans with pre-

16



defined actions or behaviors to simulate various social settings with varying

crowd densities to perform experiments for social robotics. The architecture de-

signed based on the proposed framework allows for multiple user-controlled

and autonomous agents parallelly, thus allowing the facility to be utilized for

online multi-agent control and coordination experiments. Section 3.5 describes

in detail the different policies implemented for planning and control of both real

and virtual robots.

Virtual environment

Robot FOVHuman FOV

Real robot with XR
Real human with XR

(a) (b)

Human avatar Robot avatar

Figure 3.1: Visual perception of UE™ industrial city environment via
avatar by (a) human and (b) robot agents who may then in-
teract in real time inside the simulated world.

The system architecture for the developed testbed which is used to achieve

human-robot collaboration between humans and real-world robots with their

avatars in the virtual environment defined in UE™ is shown below in figure

3.2. The communication or transfer of the kinematics from real-world agents to

their respective avatars in the virtual workspace are denoted with blue arrows,

while the transfer of perception of these virtual avatars to their real-world coun-

terparts is denoted by orange arrows in the figure. The human avatars in the

workspace U are controlled by the human operators present in the workspace
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Figure 3.2: Proposed framework that enables research on human-
autonomy interactions and collaborations through virtual aug-
mentation in photo-realistic simulated UE™ worlds.

W bia the VR headsets and cameras that enable real-time VR body tracking.

The motion capture system installed in the workspaceW streams the real robot

state to their respective robot avatars by detecting the reflective markers ad-

hered to the robots operating in this workspace. In order to simulate the FOV

of the robot agents, virtual sensors are implemented through sensor APIs (de-

scribed in section 3.3), while the VR headset allows the humans present in the

facility to observe the workspace. The FOVs of not only robots but also humans

in the facility can be monitored constantly and in real time to facilitate shared

perception in agents as the FOVs are defined inside the virtual environment.

This feature of tracking the FOVs of the human and robot agents simultaneously

allows for direct sharing of visual cues observed by any agent with any other

agent, human or robot, and thus provides a unique advantage for the proposed

framework over existing facilities which only consider sharing cues inside the
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robot FOV [25]. In addition, section 4.1 and 4.2 describes the multi-modal form

of communication (audio or visual) between the humans and real and virtual

robots which supports research and testing on human-robot interactions. Table

3.1 gives a detailed summary of the various software and hardware components

essential in developing the proposed architecture.
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Component Application

Software

UE™ Game engine that renders and
hosts the virtual environments
alongside virtual robot and human
actors.

Motive 3.0 Skeletal solver used for creating
rigid bodies of robots in the real-
world through tracked markers.

DeepMotion SDK Three-point VR tracker that
transfers human movement to
UE4™ actor.

NatNet SDK Transfers localization information
from Motive to UE4™ and ROS-
bot.

Hardware

OptiTrack Primex 22 Camera (10 units) Camera testbed used for tracking
and localizing the physical robots
through placed markers.

ROSbot 2.0 (02 units) Ground robots used in the physical
experiments.

Meta Quest 2 VR equipment put on by the hu-
man user that allows the human to
see, hear, and interact with the vir-
tual world.

Dell Alienware Aurora R13 Primary desktop computer that
simultaneously runs all software
and perception algorithms.

Alienware x15 R2 Laptop (02 units) Control stations that receive way-
points (x, y, θ) from the primary
desktop and communicate control
commands to the ROSbot.

Table 3.1: Description of software and hardware components of the facility.
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3.1 UE™ Simulation Environment

The environment simulated in UE™ forms the core of the entire architecture

presented in this research and acts as the interface between the virtual and real

agents. The UE™ software is the platform in this work as it is widely con-

sidered the most visually realistic tool, thus bridging the simulation-to-reality

gap in perception-related tasks while also providing uninterrupted access to all

agents operating within. The framework shown in figure 2.2 leverages UE™ for

supporting real-time rendering and manipulation of multiple photorealistic and

programmable environments. In this work, the industrial city simulated envi-

ronment (figure 3.3(a)), obtained from UE™ Marketplace, serves as the base

environment for conducting the experiments presented in chapter 4. In order to

include digital avatars and virtual agents, stream data amongst various agents

of the HATs, and support agent associated sensing modalities (section 3.4), the

base environment is further modified. The facility provides the user the flexi-

bility to define, programmatically manipulate, and test a broad range of envi-

ronmental conditions such as fog, time of day, and luminosity. Most of these

conditions would be difficult to replicate in real-world or laboratory physical

experiments and could influence visual perception in both robots as well as hu-

mans. Digital avatars are created to resemble their real-world counterparts in

aesthetic, as required by the application, and in function by establishing a kine-

matic and sensing coupling between them as described section 3.2 and section

3.3.

Based on the requirements of the test or experimental scenario, as well as

functionally by establishing a kinematic and sensing coupling with their real-

world counterparts, digital avatars can be created that aesthetically resemble
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their rel-world counterpartsas explained in section 3.2 and Section 3.3. This in-

tegration enables the development of a real-time hardware-in-loop simulation

environment for unified control and perception of collaborative agents in the

real and virtual world. Actors such as pedestrians, mobile vehicles, and virtual

robots are created that are programmed using C++ and can be controlled offline

via predefined trajectories, or are equipped with simulated dynamics, percep-

tion, and control algorithms. These algorithms run online and allow the testing

of collaboration and autonomy with not only hardware but also software-in-the-

loop, as explained in section 3.3 and section 3.5 respectively. figure 3.3 shows

an example of such a programmed actor with with feedback controller-in-the-

loop, comprised of an AAV, while sensing their environment by the means of

onboard RGBD camera.

Figure 3.3: Virtual world, inclusive of autonomous robots, sensors, and ar-
tificial intelligence algorithms, developed exclusively for this
facility using UE4™ is an industrial city monitored by an AAV
equipped with onboard RGBD camera.
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3.2 Human Interface

The goal of the architecture developed in this research is to provide a facility for

a variety of applications in human-robot collaboration and in order to achieve

achieve this, the human operators need to perceive and interact with the simu-

lation environment and the different autonomous agents in it while simultane-

ously synchronizing their body movements with their avatars. As an example,

humans in the testbed may need to react to robot motions and behaviors, while

also providing commands to their robot teammates in the HAT by means of

hand gestures or semantics. In addition, in order to test, study and analyze dif-

ferent types of collaborative tasks performed by larger HATs, human and robot

avatars present in the facility may be required to interact with virtual humans

or other human avatars in the UE™ simulated environment. To ensure this, the

architecture created in this research provides the capability to simulate these

human avatars using the Meta Quest 2 hardware with a Steam VR backend.

The real humans with XR are granted perception of the virtual environment

and control of their avatars in the virtual workspace through the Meta Quest 2

hardware. The real human with XR is able to view the simulated environment

as rendered frames and also listen to audio, as sensed by the human avatar,

through the VR headset. The VR headset allows continuous video and audio

streaming from the first-person perspective of the virtual human avatar and

thus provides the user with an immersive first-person experience of the environ-

ment. This headset and the accompanying handheld controllers communicate

their positions to the system running Steam VR connected with UE™ over Wi-

Fi using the trackers installed in them. In the developed testbed, to transform

this data from the VR hardware into joint motions of a pre-defined skeleton of a
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human avatar, the DeepMotion SDK [9] is used which performs the three-point

VR body tracking while implementing an inverse kinematic solver. The inter-

face of human in the virtual environment, taking control of the virtual avatar

and interact with the simulation environment is shown in figure 3.4. This ap-

proach facilitates real-time seamless kinematic coupling and interaction, with a

mean latency of 10 ms, by providing the human operators inside the testbed or

the facility with the ability to control their virtual avatars without attaching any

extra markers to the body. When testing machine learning-based algorithms

trained on real-world datasets that are obtained from application-driven envi-

ronments, such as industrial workshops and offices, or when using simulation

worlds based in UE™ to generate synthetic datasets, the appearance of human

avatars is of great importance. In order to reduce the sim-to-real gap and aid

in solving the problem of reality-to-simulation and simulation-to-reality trans-

fer, a user interface is built through the UE™ Blueprint to facilitate modification

and selection of avatars of interest with ease, depending on the choice of test,

domain, or HAT application. In the research presented in this thesis, the pri-

mary focus is on the visual and audio interaction between the human and robot

agents in the testbed, as explored in section 4.1 and 4.2, however, it is worthy

to note that the developed architecture can also be extended to other forms of

interaction such as touch with the integration of other human-worn sensors, for

example haptic feedback gloves.

3.3 Robot Sensing

The development of autonomous mobile robots equipped with multi-sensing

capability has led to advances in information-driven planning and control [11]
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Figure 3.4: UE™ Environment with DeepMotion SDK (avatar) and virtual
robot along with the human with XR headset and handle con-
trollers.

and modeling of robot sensor measurements is one of the most crucial compo-

nents for HAT simulations. The robot platforms present within the designed

cyber-physcial environment need to gather, process, and relay the knowledge

about the environment in which they are operating as well as the agents within

it while simultaneously augmenting their interaction capabilities. To achieve

these functionalities successfully for robust operation, the sensing modalities

available on not only the real but also the virtual robots plays a pivotal role

in determining the types of HAT collaborations that can be designed and sim-

ulated within the facility. The facility, designed based on the framework pro-

posed in this thesis, hosts a unique array of exteroceptive sensors, which mea-

sure the state of the operating environment, and proprioceptive sensors that

measure the ego state of the robot. In the workspaceW, the Husarion ROSbots

that driven by ARM processors, operate and act as the UGV robot agents for

the experiments that are carried out in this work. Using rotary encoders and

IMU, these real robots are equipped to localize with dead reckoning [19]. These
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sensors may be suitable to simulate navigation in GPS-denied scenarios as they

are heavily subjected to drift. In addition to localization using the embodied

sensors in the real robots, the architecture, through the OptiTrack motion cap-

ture system, provides robot localization (as shown in figure 3.5) within 10 mm

accuracy using the reflective markers mounted on the robots. This localiza-

tion data is streamed in real time to the base stations controlling the robots as

shown in figure 3.8, which can either use the dead-reckoning localization or this

motion-capture-based localization. While running experiments, it is possible

that the FOV of the motion capture cameras observing the reflective markers

can sometimes be blocked by the multiple robots, humans, obstacles, etc. pop-

ulating the real workspace, resulting in loss of localization. For such scenarios,

the localization strategy is designed such that it can switch autonomously to

dead-reckoning-based localization, with initialization at the robot’s last know

localization and revert back to the motion-capture-based localization once the

cameras trace the markers again.

On the perception front, different modalities have also been developed in the

facility by integrating recent advances in sensor modeling, traditional computer

vision algorithms, and sensor APIs from UnrealCV [29]. This integration pro-

vides the simulation of 4-channel 8-bit data streams like RGBA cameras, surface

normal estimation, and online panoptic segmentation. The facility also provides

single channel (16-bit) images for ground truth depth which can be acquired in

real-time using pre-defined depth cameras or stereo RGB cameras though Un-

realCV. To process the RGB data stream obtained from UnrealCV and gener-

ate 16-bit (2 8-bit channel) images of dense optical flow using 8-bit (1 channel)

grayscale images and the Farneback Estimation algorithm, an online processing

pipeline is created using OpenCV [3]. The facility also supports novel modular
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Figure 3.5: Robot localization and motion transfer to the virtual world us-
ing OptiTrack Motion Capture System.

blueprint controllable and/or C++ programmable robot agents that are devel-

oped in UE™ with the aforementioned sensors interfaced with the robot avatars

or virtual robots to enable them perception while moving in the simulation envi-

ronment. In order to enable the use of these sensors as static sensors, that moni-

tor the virtual environment in the simulation, or to be programmed to move on

defined trajectories for collecting/generating dataset, a separate Python script

is created. In short, all these sensors, summarized in figure 3.6, defined in the

virtual environment with user-defined noise characteristics can be either used

as static sensors placed in the environment or dynamic sensors mounted on the

agents in the environments or be programmed to move on trajectories that are

defined offline.

All the real robots (without avatars) sense the real workspace and are

equipped with Orbecc Astra RGBD camera, RP LIDAR A2 (laser range scan-
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ner), and Time-of-flight (TOF) sensors (shown in figure 3.7). By implementing

a ROS architecture, the output of these sensors mounted on the virtual and real

robots is communicated to robot planners (explained in detail in section 3.5) that

run onboard for active perception tasks facilitating inter-agent interaction.

Figure 3.6: Examples of simulated sensing modalities and computer vision
algorithms in the developed facility.

3.4 Communication Between the Real and Virtual Workspaces

The testbed/facility developed in this work passes message in order to facili-

tate inter-agent communication in and across the virtual and real workspaces

by hosting different communication. Figure 3.8 provides an overview of the

overall message-passing framework. The communications/data from the mo-

tion caption system are harbored on an Alienware Aurora R13 system, that acts

as a head substation, while simultaneously hosting the virtual environment in

UE™, and supporting the VR tracking and associated hardware. Based on the
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Figure 3.7: Sensing modalities available on the UGV robots used while
conducting experiments.

cooperation strategy or control policy employed, and depending on the result

of the interactions between the different agents in the virtual environment, the

head substation generates desired wyapoints orgoal state for the robots. For

the robots operating inW, the intended waypoints are communicated to their

base control stations over LAN. These waypoints are then converted into con-

trol commands that are transmitted to the real tobots over the 2.4 GHz Wi-Fi

networks, based on the planning and control framework running on the sta-

tions (described in detail in section 3.5), set up on distinct custom channels to

avoid aliasing. Communication between the base control stations is established

over a LAN connection through UDP protocols which allows the simulation of

real-time inter-robot communication with low latency. The OptiTrack motion-

capture cameras stream data packets, as the robots move in the workspaceW,
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comprising the marker data, via a bridge connection running at a frequency of

120 Hz, to the head substation. The facility employs a proprietary data process-

ing software for OptiTrack called Motive which uses the marker data to infer

the localization of the robots that are defined through a collection of markers as

user-specified rigid bodies. The inferred robot localization is then streamed to

the real robots over UDP channels via the base control stations for the purpose

of planning and control followed by transmission to the robot avatars in the vir-

tual environment U. This transfer establishes a kinematic coupling, using the

proprietary NatNet SDK clocking at 120 Hz and with a latency of 10 ms, be-

tween the robot avatars and their real-world counterparts. The minimum over-

all system time delay, from sending a desired waypoint from the head station to

detecting the corresponding effects in the robot state in the virtual environment,

is approximately 0.051 s. This is seen in the response of the system to a step in-

put in figure 3.9, where the input command is the waypoint provided and the

response/output is the real-time position of the robot in the virtual world.

3.5 Planning and Control

This subsection introduces the waypoint-following policy implemented on real

and virtual robots in this testbed. For a robot i ∈ R operating inW (real robots

or real robots with XR), its base control station receives a waypoint denoted by

q∗i , i ∈ R in W directly or receives a waypoint in U and maps it to a desired

waypoint in W using the transformation T−1, before executing the waypoint-

following policy to determine the controls. For virtual robots, however, the

waypoint q∗i , i ∈ P is directly used by the policy. For brevity in notation, agent

indices are omitted in the rest of this section. Assuming q∗(k) = [p∗, θ∗]T is the
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Figure 3.8: The cyber-physical facility interfaces and communication
pipeline which enable seamless integration of real agents with
XR as avatars in the virtual workspace.

desired waypoint for a robot in W at time-step k, where the desired position

and desired orientation is p = [x∗ , y∗]T and θ∗ respectively. The algorithm for

waypoint-following implemented on the robot is a move-then-turn policy. At

state q = [x, y, θ]T, the robot first turns to point towards the desired waypoint

position p∗, moves towards it, and then rotates to reach the desired orientation

θ∗. This policy outputs the control command u = [v,w]T comprised of linear

velocity v and angular velocity w, which has been summarized in the order of

execution as follows:

v = 0 w = kθ (tan−1
(

y∗ − y
x∗ − x

)
− θ) (3.1)

v = kx (x∗ − x) + ky (y∗ − y) w = 0 (3.2)

v = 0 w = kθ (θ∗ − θ) (3.3)
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Figure 3.9: Response of the cyber-physical system to a step input to
demonstrate the overall system time delay.

where kx, ky, kθ ∈ R+ are user-defined parameters with larger values represent-

ing a faster response to the error in desired and current pose of the robot. At

all times throughout this process, the motion capture systems track the motion

of these robots inW and record their states. As mentioned in Section 3.4, this

localization information q̂i, i ∈ R, serving as an estimate of qi, is then streamed

to the robot i ∈ R base control station and to its robot avatar i ∈ P in UE™ if it

exists, which is moved to q̂i, i ∈ P obtained using the transformation T as shown

in figure 3.2. This control loop, to couple the real robot with its avatar, runs at a

frequency of 120 Hz in real time. The planner continuously streams waypoints

according to different tasks as demonstrated in Section 4 with the desired run-

rate frequency and the control algorithm outputs controls according to the latest

desired waypoint.
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CHAPTER 4

EXPERIMENTS AND RESULTS

To convey the functionalities and capabilities of the developed facility, based

on the proposed framework, three experiments are conducted to highlight dif-

ferent types of agent interactions across real and virtual workspaces. The first

experiment will focus on human-robot interaction using vision-based modality

of interaction, the second experiment will test the same but instead implement

an audio-based modality of interaction, and the third will showcase multi-robot

teaming across the real and virtual workspace.

4.1 Human-Robot Vision-based Interaction and Control

The first experiment is designed to showcase interaction-based control of virtual

robots and robot avatars through the mode of vision using gesture commands

from a human teammate as summarized in figure 4.2. This demonstration takes

place in the industrial city environment, built in UE™, hosting the following

actors: a human avatar, a robot avatar, and a virtual robot. As shown in figure

3.1, all agents can perceive the virtual workspace using simulated RGB cameras.

Human avatars communicate with the robot agents using gestures as shown in

figure 4.1 to command the next waypoint. These gestures are detected by a real-

time human-pose detection algorithm, OpenPose [5], [43], implemented on each

of the robot agents. OpenPose utilizes deep learning techniques and employs

a convolutional neural network (CNN) to estimate the keypoints. It processes

the input image and generates a heatmap representation where each body part

corresponds to a peak which are then connected to form the pose estimation.

Three distinct pose commands are defined for commanding the robot to move
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in three different directions: left, forward, and right.

(a) (b) (c)

Figure 4.1: Through the designed architecture, a virtual autonomous agent
(UGV) inside the industrial city, equipped with a virtual RGB
camera and implementing OpenPose for keypoint detection
(top row), is able to recognize and interpret the manual com-
mands provided by a real human in W, namely (a) right, (b)
forward, and (c) left, by virtue of the human avatar created in
real time using VR body tracking.

Based on the pose commands received as visual cues, the planner gener-

ates desired waypoints in the commanded direction. These waypoints are then

streamed to the base control stations of the real robots with XR over LAN and

to the virtual robots in the environment as described in section 3.4. The desired

orientation at each of these waypoints is selected to make the robots face the

human avatar to perceive the next gesture command. The waypoint-following

policy as described in Section 3.5 is then used to calculate the control commands

on each of the robot agents to reach the desired waypoints. This experiment is

summarized using the schematic in figure 4.2 for a virtual robot ı, ı ∈ P and a

real robot with XR ȷ, ȷ ∈ P ∩ R.
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Figure 4.2: Human-robot collaboration is achieved by a human avatar,
teleoperated by a real human with XR, commanding heading
directions to the virtual robot ı and robot avatar ȷ operating in
U, using pose commands generated by the keypoint detection
as shown in Figure. 4.1

In this experiment, the virtual robot and the robot avatar are placed along-

side each other in the simulation environment at a fixed distance from the hu-

man avatar and facing it. With each pose command, the robot agents move a

distance of 0.5 meters in the commanded direction. Figure 4.3 shows an instance

of the human operator providing command to the robots to go right while con-

ducting the experiment in the cyber-physical environment. A total of ten pose

commands were presented to each agent and their position trajectory is plotted

in figure 4.4. The plotted results show that both the virtual robot and the robot

avatar were able to correctly identify and react to all the pre-defined gesture

commands. The figure also provides the error in the position of the real robot
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for the experiment. From the plot, it is observed that the maximum error in the

position of the real robot is 0.08 m. Both the virtual robot and the robot avatar

successfully traverse the distance with proper heading directions as shown in

figure 4.4. Comparing the trajectories of the robot avatar and the virtual robot,

it can be clearly observed that the robot avatar successfully incorporates the dy-

namics of its real-world counterpart and hence moves in a more realistic way

as compared to the virtual robot. This experiment demonstrates how the fa-

cility is able to successfully simulate proximate visual interactions, embodied

agents, and incorporate real-world dynamics while providing a safe medium

for human-robot collaboration.

Figure 4.3: Human-robot collaboration using vision-based control. The
robot agents are seen in the virtual workspace from the human
avatar’s perspective. The real workspace is seen in the upper-
right corner with the human and the real robot.
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Figure 4.4: (a) Trajectory results of the pose estimation experiment for
human-robot interaction. (b) Plot for error in the position of
the real robot over the duration of the experiment.

4.2 Human-Robot Audio-based Interaction and Control

In section 4.1 the pre-defined commands can also be communicated to the robots

as audio cues by using the Google Audio speech-to-text interface [16] running

on the head substation. The real human with XR can speak any of the three

pre-defined commands into the internal microphone of the VR headset which

is then transcribed to text. This section aims to showcase the multi-modal inter-

action capabilities of the facility between humans, virtual robots, and real robot

avatars at a more robust level. This is achieved primarily through audio mode

of perception, while using Iterative Visual Question Answering (iVQA) from in-
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puts given by human operator as summarized in figure 4.6. This demonstration

also takes place in the industrial city environment in UE™, hosts the same actors

as in section 4.1, and all agents perceive the virtual workspace. The setup devel-

Figure 4.5: Setup for the audio-based human-robot collaboration exper-
iment in the virtual environment resembling a multi-agent,
multi-target detection scenario.

oped for the experiment resembles a multi-target detection scenario using mul-

tiple agents where each agent k (including humans represented by i and robots

represented by j) operating inU searches a sub-region Ak of the workspace, i.e.,

Ak ∈ U with k ∈ i ∪ j. Figure 4.5 shows a birds-eye view of the workspace in

the simulation environment and the location of the agents at the start of the ex-

periment. In this case, human avatars communicate with the robot agents using

audio-based inputs. These inputs are transformed into a set of questions using

the Large Language Model (LLM) Generative Pretrained Transformer (GPT-3.5

turbo) [27] to search different targets (t) present in the simulation environment.

Each robot then poses these set of questions to the RGB images obtained us-
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ing the cameras onboard the agents as iVQA by implementing the Generative

Image-to-text Transformer (GiT) [41] to determine if the given target is present

in the scene or not. The positive detections are provided as results to the human

operator as feedback from the robot agents.

Figure 4.6: Human-robot collaboration is achieved by a human avatar,
teleoperated by a real human with XR, providing instructions
to the virtual robot ı and robot avatar ȷ operating in U for tar-
get detection in a centralized framework.

As mentioned in section 1.3, human operators collaborating with au-

tonomous can help integrate expertise, domain knowledge, and situational

awareness, thus making these systems more robust, adaptive, and efficient. The

pipeline developed in this experiment helps integrate and demonstrate these

advantages of human expertise into the overall architecture of the facility and

furthers the applicability of the developed facility. In this setup, the human

operator provides a description of the targets that are present in the simulated
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Figure 4.7: Trajectory of the virtual robot and real robot with XR indicating
the configuration of the robot at the instance of target detection.

environment via speech and have to be detected by the different autonomous

agents operating in the virtual world. This speech description is then converted

into text using the Google Audio interface which is passed as input to the LLM

that processes this raw description of the various targets and outputs a set of

questions with each question corresponding to a target [8], [44]. The questions

are framed in a particular manner to check if the described target is present in

the given scene or not and are employed for iVQA on RGB images obtained

from cameras located on each of the robot platforms [35], [34]. GiT is a state-of-

the-art transformer network developed for unifying vision-language operations

such as image/video question answering and captioning with a simple archi-

tecture of single image encoder and single text decoder. The image encoder in

the network is based on the contrastive pre-trained model while the text de-

coder is a transformer module that is used to predict the text description, both

of which are pre-trained by using a generation task. By using GiT, the human
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operator has an opportunity to provide a detailed description of the target, such

as color, scene text, shape, etc., instead of simply providing the object names for

detection, such as car, building, etc. If the output of the iVQA task is positive,

the pipeline then uses the depth map generated at the same timestep to provide

an approximate location of the detected target from the robot. The schematic

presented in figure 4.6 summarizes the experiment consisting of a virtual robot

ı, ı ∈ P and a real robot with XR ȷ, ȷ ∈ P ∩ R alongside a human operator.

Figure 4.8: Target detections by the robot agents while also providing the
distance of the target from the robot.

In this setup, the virtual robot, the robot avatar, and the human avatar are

placed in separate quadrants of the simulation environment such that they are

distant and do not see each other. The robot agents move along trajectories that

are defined offline and cover separate sectors of the workspace. Three dynamic

targets (a red sports car, an army tank, and a pedestrian) and two static targets
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(a green colored land robot and a blue car with a person besides it) are placed at

random locations. The human operator provides the input to the robots at the

start of the experiment by saying “Please let me know if there is a red car in the

scene or a green colored land robot in the scene or an army tank in the scene or a

person in a blue shirt in the scene or a blue car with a person besides it wearing

a black coat in the scene.” Figure 4.7 shows the trajectory followed by the virtual

robot and the location of the robot at the moment it detected each target. Figure

4.8 shows the output from the perception pipeline, i.e., the detections post VQA

along with the average planar distance of the target from the robot, which is

provided as feedback to the human. The results show that the robots are able to

correctly identify the desired dynamic targets in real-world environments based

on the description provided as input by the human. While there were errors in

certain detections, they were eliminated by increasing the confidence estimates

of the network to 0.2 which indicates that the pipeline has potential to be used

in even more cluttered environments. This experiment demonstrates how the

facility is able to successfully simulate proximate audio interactions coupled

with iVQA techniques and incorporate real-world dynamics while providing a

safe medium for human-robot collaboration.

4.3 Multi-Robot Interaction for Formation Control

The third experiment is designed to illustrate closed-loop interaction and con-

trol between multiple robot agents in the facility as shown in figure 2.2, namely

a virtual robot, a robot avatar sensing in U and, a real robot sensing in W.

The purpose of this experiment is to demonstrate the ability of this facility

to bridge the gap of data transfer between agents existing in simulation and
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the real world. In this experiment, the robot team is tasked with a leader-

follower-based formation control objective. A virtual robot and a robot avatar

are placed into the industrial city environment created in UE™ and a real robot

and the real robot with XR corresponding to the robot avatar are operating in

the physical lab workspace. The virtual robot is designated as the leader robot

which independently moves along a pre-specified path designed offline. The

real robot with XR determines its waypoints using the localization information

of the virtual robot, as communicated to its virtual-world counterpart (robot

avatar), while the real robot does so, in turn, by using the localization of the real

robot with XR. A formation control policy is implemented onboard all the robot

agents to calculate these waypoints which ensures that the robot team maintains

a desired formation.

Figure 4.9: Leveraging the communication pipeline of the designed archi-
tecture, a virtual robot ı, real robot with XR ȷ with its avatar
and a real robot ℓ co-ordinate amongst themselves to maintain
the isosceles triangle formation.

This experiment is illustrated in figure 4.9 which features a multi-robot team

comprising of a virtual robot ı, ı ∈ P, a real robot with XR ȷ, ȷ ∈ P ∩ R, and a real
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robot ℓ, ℓ ∈ P. The virtual robot, in the role of a leader, moves along an elliptical

trajectory using a spline path. The state of the leader is streamed via socket

connection to the base control stations of the real robot with XR in W. This

base control station calculates the desired waypoint based on the state of the

leader in real time to maintain an isosceles triangle formation. Simultaneously,

the state of this real robot with XR is also streamed to the base control station of

the real robot via socket programming through the inter-robot LAN connection,

which calculates the desired waypoint for this robot to maintain the formation.

This allows for a decentralized approach to formation control of a multi-robot

team regardless of whether the agent of the team exists in W or U. All the

robot agents use the policy defined in Section 3.5 to reach the desired waypoints

obtained online. It is important to note that in this experiment, only the state of

real robot with XR is streamed back to the virtual environment since it is the

only robot with a virtual avatar.

Figure 4.10: Demonstration of multi-robot interaction for consensus con-
trol in the cyber-physical environment for maintaining trian-
gular formation.

The trajectories of the agents in the robot team are plotted in figure 4.11(a).
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The virtual robot in UE4™ follows the elliptical trajectory as designed, and the

successful coupling between the real robot with XR and its virtual avatar can be

clearly observed. The robot team maintains the desired isosceles triangle for-

mation throughout the experiment as illustrated in different instances in figure

4.11(a). Since the path of the leader and the desired formation were pre-defined,

the desired trajectories for all the robots are determined offline and the error

between their positions during the experiment as compared with these trajecto-

ries are recorded. High positional accuracy was achieved from both agents as

the largest positional error was within 0.10 m as shown in figure 4.11 (b). This

performance plot also shows that the second follower (real robot) consistently

experiences lower positional accuracy when compared to the first follower (a

real robot with XR). However, this can be attributed to the aggregation of er-

rors due to the decentralized nature of coordination amongst the agents. Figure

4.10 shows an instance of the multi-robot experiment being conducted in the

facility in real-time with the leader and avatar of the real robot with XR being

shown in the simulation environment while the real robot and the real robot

with XR operate in the physcial workspace. These results successfully demon-

strate the capability of this testbed to establish communication between vari-

ous agents existing in the real and virtual workspace and, as a result, enable

real-time interaction between real and simulated agents. This unlocks the po-

tential to do large-scale multi-robot experiments without space and hardware

constraints while maintaining real-world dynamics in selected agents.
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Figure 4.11: (a) Trajectory results of the leader-follower formation control
experiment. The virtual robot is the leader, the real robot with
XR is the first follower, and the real robot is the second fol-
lower. (b) The position error of each robot follower over the
duration of the experiment.
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CHAPTER 5

DISCUSSION AND FUTURE WORK

5.1 Conclusion

This research presents a framework for developing a multi-modal cyber-

physical XR facility that leverages state-of-the-art robotics, visualization tools,

motion capture, and VR technology to enable novel experimental testbed in-

terfacing physical and simulated worlds. UE™ is used to create photorealistic

simulated environments which facilitate interactions amongst HATs compris-

ing of real agents, virtual agents, and agent avatars, tasked with achieving var-

ious objectives. These agent avatars operating in the simulation environment

are teleoperated by the real agents with XR operating in a physical environ-

ment, thus sharing real-world dynamics while their perception from the avatars

is shared for planning and decision-making. Communication pipelines enable

seamless interfacing of the real and virtual workspaces to enable real-time col-

laboration amongst various agents in the HATs. The results of the three experi-

ments demonstrate the capability of this system’s framework to effectively host

highly flexible environments with interactive agents spanning a combination

of both the real and virtual worlds. The first experiment focuses on establish-

ing human-robot perception and effectively demonstrated closed-loop control

of both virtual robots and real robots with coupled virtual avatars. Using only

body gestures, the human operators effectively communicate commands with

robot agents and control the trajectory of each agent in real time. The second ex-

periment focuses on demonstrating multi-modal human-robot collaboration by

fusing LLMs and Vision Transformers (ViTs). With perception and control suc-
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cessfully established between the robots and humans in this testbed, the third

experiment demonstrates the ability to establish decentralized communication

between varying robot agents. By implementing a leader-follower and forma-

tion control scenario on robot teams, this experiment effectively conveys the

modality of RealTHASC to host real-time communication between the simu-

lated and physical worlds and extends its reach to be used for multi-robot exper-

iments. Apart from such pre-deployment testing of collaboration algorithms,

this testbed can also be used as a closed-loop interaction interface to facilitate

downstream tasks like online learning and data collection for safety-critical ap-

plications like social navigation. Finally, the research presented in this thesis led

to the development of the RealTHASC (Real-Time Human Autonomous Sys-

tems Collaborations) facility.

5.2 Future Work

Future work will include extending the capabilities of the facility to include new

interfaces for human operators like haptic feedback devices and leveraging this

facility to study (1) AI-supported teamwork via collaborative virtual environ-

ments, (2) decentralized AI-supported multi-agent planning and perception,

(3) integration of emerging neuromorphic and insect-scale technologies, and

(4) distributed sensing and control for very-large networks of agents. Human-

robot collaboration is an essential tool to develop safe and reliable autonomy

in challenging scenarios. However, testing and experimentation in such scenar-

ios is also difficult and potentially entail serious safety concerns to humans and

robots. The work presented here is currently being extended to such settings,

namely underwater environments. The goal of this research is to develop robot
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agents (also called robot buddy) to assist scuba divers in underwater explo-

ration experiments. The hope is that the ReaTHASC facility will be deployed

for conducting a variety of human-robot collaboration experiments involving

researchers from different countries.
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