
Proceedings of the 14th IEEE
International Conference on Nanotechnology
Toronto, Canada, August 18-21, 2014

Digital Implementation of a Spiking Neural Network (SNN) Capable
of Spike-Timing-Dependent Plasticity (STDP) Learning

Di Ru, Student Member, IEEE, Xu Zhang, Ziye Xu, Silvia Ferrari and Pinaki Mazumder,
Fellow, IEEE

Abstract-The neural network model of computation has
been proven to be faster and more energy-efficient than Boolean

CMOS computations in numerous real-world applications. As a
result, neuromorphic circuits have been garnering growing

interest as the integration complexity within chips has reached
several billion transistors. This article presents a digital
implementation of a re-scalable spiking neural network (SNN)
to demonstrate how spike timing-dependent plasticity (STDP)

learning can be employed to train a virtual insect to navigate
through a terrain with obstacles by processing information from
the environment.

I. INTRODUCTION

The neural network paradigm has recently been drawing

increasing interest in the circuit design field because of its
massive parallelism and potential scalability. Neuromorphic

circuits, which are usually composed of integrate-and-fire
(I&F) neuron models [1] - [2], can be applied to solve

problems in many areas, including position detection [3],
robotic games [4], pattern recognition [5] and path

recognition [6]. Although these problems can also be solved

using a general purpose processor with software solutions,

dedicated circuits have many advantages over general
purpose processors. For example, a dedicated circuit is more

power-efficient and needs less area for implementation

compared with a general purpose processor. This paper

presents an indirect training algorithm through which a

learning agent can be trained to find targets and avoid
obstacles. The training algorithm is based on spike

timing-dependent plasticity (STDP), which has been proven

suitable as a solution to learning/training problems by

previous investigations [7], [8]. According to the STDP rule,

weights are adjusted based on the time difference between
pre-synaptic and post-synaptic spikes. The main advantages
of applying the STDP rule in the design is that the weights do
not need to be accessed directly and the learning agent can be

trained indirectly. This design allows a learning agent to be

trained by receiving signals from its external components

without accessing any of its internal components. In addition

to indirect training, direct training is widely used in many
algorithms. However, under certain circumstances, e.g., when

tuning devices implanted in human bodies, direct training is

not feasible. In this case, indirect training becomes the only

option.

*Resrach supported by NSF under ECCS Grant 1059177.
Di Hu and Pinaki Mazumder are with the University of Michigan, Ann

Arbor, MI 48109 USA (phone: 734-763-2107; e-mail: {hudi, mazum}@
umich.edu).

Xu Zhang, Silvia Ferrari and Ziye Xu are with Duke University, Durham,
NC 27708 USA. (e-mail: {xz70.sferrari}@duke.edu.dec.ziye@gmail.com).

This paper presents a virtual insect model that can be
trained by the proposed indirect training algorithm, and can
then find a randomly given target on a map. The virtual insect
is based on a re-scalable neural network consisting of an input
layer, an output layer and a hidden layer. The SNN is
re-scalable because the training algorithm has no requirement
on the size of each layer or the forms of connections between
neurons within one layer or neurons of different layers. In this
article, Section II introduces the virtual insect model. Section
III introduces the training algorithm used in this research
while Section IV discusses digital circuit implementation of
the design. Finally, Section V shows the test results of the
implemented design.

II. VIRTUAL INSECT MODEL BASED ON STDP

In this research, the weights were adjusted through STDP.

STDP modifies synaptic weights based on the time difference

between the arrival of a pre-synaptic spike and the arrival of a

post-synaptic spike. As Fig.l shows, depending on the time
difference, the weight can be either increased or decreased by

a certain value, which varies exponentially with the time

difference.
� 100

.fa �
'Qj 60 '

� 40

)

EL mr is ..so
·100 ·50 0 so 100

Relative Time Difference Between Pre-synaptic

and Pot-synaptic Spikes (ms)

Fig. I. An lllustration of Spike Timing-Dependent Plasticity

:: \ Left Target Right Target \),e�GC ... Sensor
\

Sensor
Right Terrain

Sensor

Fig. 2. External Structure of the Virtual Insect

A virtual insect model was constructed to demonstrate the
proposed algorithm and design. The virtual insect is initially
trained off line. After being well trained, the virtual insect can

find a given target on any map with any form of obstacles. Fig.

2 shows the external structure of a virtual insect, which

consists of a target sensor, a terrain sensor and a motor on

978-1-4799-5622-71$31.00 ©2014 IEEE 873

each of its right and left sides. The target sensor generates a

signal Starget based on the distance between the sensor and

the target. The further the virtual insect is from the target, the

stronger Starget will be. The terrain sensor generates a signal

Sterrain based on the roughness of the map, with a rougher

map corresponding to a stronger Sterrain' The two motors
control the movement of the insect.

The SNN architecture illustrated in Fig. 3, which includes

one hundred input neurons, two hundred and fifty-six hidden

neurons and fifty output neurons, was implemented to

demonstrate the concept of the indirect training algorithm.
The structure of the SNN is flexible (i.e. each layer can have

any number of neurons and can be of any shape, and the

connections between neurons can be arbitrary) as long as

there are input layer, hidden layer and output layer as

demonstrated in Fig. 3.

Sensors

. .
Signals from

Right-side
Sensors

layer

Hidden layer

Fig. 3. The Structure of the SNN
Arrows demonstrate the direction of spikes.

The speed of the motors and the speed of the insect are

determined by equation (1). Vx and Vy are the speeds of the

insect along the x-axis and the y-axis, respectively. V is the

linear speed of the insect, and VL and VR are the speeds of the

left and right motors, respectively. B is the angle between the

middle axis of the insect and the x-axis. L, Tmotor and 1] are

scaling constants, and t{ and tk are the fuing times of the

output neurons. According to equation (1), a motor always
decelerates unless its corresponding output neuron fues a

spike. Therefore, the more frequently an output neuron fues,

the faster the speed of the corresponding motor. Because the

fuing frequency of an output neuron depends on the weights
carried by the synapses connecting it to its corresponding
input neurons, training the insect is essentially equivalent to

adjusting the weights to the proper values.

Vx = V* * cos (B)
Vy = V * sin(B)

V =
VL+VR

2
b.B =

VR-VL
L

b.VL = -2L+1] * (t == t{) Tmotor

b.VR = - 2L + 1] * (t == tk) '[motor

(1)

During the training phase, training signals are injected into
the input neurons. Table I shows all of the 12 possible cases

of sensor signal combinations. As training signals are
generated for each case, there are 12 sets of training signals.

TABLE !. 12 SENSOR SIGNAL CASES

Case # L Terrain R Terrain L Target R Target

1 Plain Plain Strong Weak

2 Plain Rough Strong Weak

3 Rough Plain Strong Weak

4 Rough Rough Strong Weak

5 Plain Plain Equal Equal

6 Plain Rough Equal Equal

7 Rough Plain Equal Equal

8 Rough Rough Equal Equal

9 Plain Plain Weak Strong

10 Plain Rough Weak Strong

1 1 Rough Plain Weak Strong

12 Rough Rough Weak Strong

III. TRAINING ALGORITHM

In general, the actual training process can be divided into

the following steps.
l. According to each of the 12 cases in Table I, a set of

terrain and target signals is generated.

2. In each case, the desired fuing frequencies for both the

left and right output layers are calculated using equation (2) .

In equation (2), VL and VR are the desired firing frequencies

of the output motor neurons and StrLI StLI StrRI StR are the
left terrain sensor input, the left target sensor input, the

right terrain sensor input and the right target sensor input,

respectively. C1 is set to be larger than C2 to prioritize the
terrain sensors.

(2)

3. In each case, the difference between the actual fuing

frequency and the desired fuing frequency is calculated

and an arithmetic average difference for the total 12 cases

is calculated using equation (3). In equation (3), e(t/) is

the average difference at time tb vi
'
and vi are the desired

and actual fuing frequencies in each case, and Pm is the

count of total cases.

J(VP* - VP)2

I I
p
m

[[
e(t/) =

iEO
p
=l 2 * Pm

(3)

4. Based on the change of the average difference between

the actual firing frequencies and desired target fuing

frequencies, the training signals for the next iteration are
generated. In general, when the average difference

decreases, the training signals will remain unchanged. If

the average difference increases, the order of the training

signals will flip.

874

5. The training signals are injected into the some randomly

selected input neuron pairs, and a new iteration is started.

When the average difference e is sufficiently small, the
insect has been well trained.

IV. CMOS CIRCUIT IMPLEMENTATION

A CMOS circuit was implemented using 130-nm CMOS
technology. The full chip has an area of 6.5 mm (width) by 4.8
rum (height) and a frequency of 22.5 MHz. The
implementation was accomplished through synthesis and auto
placement and routing. Fig. 4 shows the floor plan and data
flow of the designed chip. Due to the large amount of internal
signals, a signal mux and a training signal generator were
added to the chip. As shown in Fig. 4, the top level 110 signals
include the target position and the insect position because
there are no actual sensors or motors. For a complete design,
these pins will be replaced by sensor signals and spikes from
output neurons.

Target V'(fuol Insecr Training Test'ng , i clock _1. Re:et _1. Reset Position Position

t Output laY"

Spikes

I
left Output

I I
Right outputl

layer Layer

I I
Testing 1- Weighted Hidden Loyer Spikes f

Controller Isynapses between Hidden Layer and Output layer I
Testing Sensor ± t HIdden Layer Spikes

Signal

I I Hidden Layer

�I MUX I .;. Weigh red Input Loyer Spikes

I Synapses between Input layer and Hidden Layer l

-:ll
,. Input Layer Spikes

Sensor

I 5ignol Input Layer

{ Training Signal

I Training Controller I t. Trolning Sensor Signal
Trainin Sensor Si nal Generator

Fig. 4. Floor Plan and Data Flow of the Designed Chip

Table II shows the layout area of each major block and full
the chip without pads. As shown in Table II, the input layer is

much larger than the other layers. This is because the training

(i.e. wrights adjustment) only happens in the input layer. As a

result, only neurons and synapses in the input layer need to

have the full functionalities. Neurons and synapses at other

locations can be simplified and require less area.

T ABLE II LA your AREA OF THE DESIGN
Block Area

Input Layer 4600 urn * 1600 urn

Hidden Layer 3750 urn * 500 urn

Output Layer 800 urn * 200 urn * 2

Testing Controller 900 urn * 400 urn

Training Controller 4900 urn * 200 urn

Control Signal Mux 950 urn * 800 urn

Whole Chip without Pads Approx. 5200 urn * 4000 urn

Fig. 5 shows the layout of the complete chip with I/O and
power pads. Each circled block corresponds to a block on Fig.

4. The full chip has an area of 6.5 rum by 4.8 rum and a
frequency of 22.5 MHz. The peak power consumption is

about 13.24 mW and the leakage power is 1.06 uW.

Fig. 5. Layout View of the Designed Chip

V. SIMULATIONS AND RESULTS

The indirect training algoritlun was implemented in

MATLAB, Verilog and CMOS to train the SNN presented in

Section II to allow the virtual insect to perform the terrain
navigation task. Prior to the hardware implementation, the

performance of the trained insect was first evaluated by
MA TLAB simulations, as demonstrated in Fig. 6, in which

the green line and the blue line depict trails of the untrained

state and the trained state of the virtual insect, respectively.

The results show that after the SNN was fully trained, the
virtual bug was capable of avoiding obstacles and obtaining

the target position.

Fig. 6. Trails of the virtual insect on uniform terrain and on terrain
populated by obstacles. [9]

875

100

80

60

40

20

Trail of Untrained Virtual Insect
with Target at (500, 220)

-Trail of Untrain e d

V irt u a l I n sect

o +----.----.----.---.----.

o 20 40 60 80 100

Fig. 7. Trail of an Untrained Virtual Insect

Tests were also performed after implementation. Fig. 7

shows the trail of an untrained virtual insect on a 1000 by

1000 map with a target at (500, 220). As shown by Fig. 7, the

untrained virtual insect wandered randomly within a 100 by

100 area, which is consistent with the result shown in Fig. 6.
Fig. 8 shows trails of the virtual insect on a plain map with

different targets at (500, 1000), (1000, 500), (1000, 1000),
(600, 1400) and (750, 150) on a 1500 by 1500 map. In Fig. 8,

the traces represent trails of the virtual insect, and the isolated
dots indicate the locations of the targets. As shown in Fig. 8,
for any random given target, the well-trained virtual insect
was able to move toward the target and stop at a position close

to the target. Because the sensor signals were proportional to

the distance between the virtual insect and the target, those

signals would become zero when the virtual insect was close

enough to the target. As a result, the virtual insect would then
stop at that location other than the target's position.

-(SOOI 1000)

-(>OOO. SOD)

-(lDOO,10(0)

-(6001 1400)

-(7S0.1SO)

Fig. 8. Trails of the Virtual Insect on a Plain Map

1200

-Obstacle
900

-{So�. 1000)

-(1000. SOD)
600

-(1000. 1000)

-(GOO. 1400)

-(750. 150)

Fig. 9. Trails of the Virtual Insect on a Map with a Square Obstacle

Fig. 9 shows trails of the virtual insect on a map with a

square obstacle. Targets were chosen to occur at the same

locations as those in Fig. 8 for comparison. As shown in Fig.

9, the well-trained virtual insect changed its path because of
the obstacle, even though the target was in the same location.
Eventually, the virtual insect was able to stop at a position

close to the target. Especially, when target was at (750, 150),

the virtual insect did not pass the area of the obstacle, thus the
traces are the same in Fig. 8 and Fig. 9.

VI. CONCLUSION

This article presents a hardware implementation of an
SNN with an indirect training algorithm. A virtual insect
model was developed as an example to demonstrate how this
approach can be used to solve practical problems. Hardware
implementation was achieved using Verilog and CMOS
technology. Future work may include building a complete
virtual insect with sensors and motors or expanding the virtual
insect model to solve other types of problems, such as pattern
recognition and robotic games.

REFERENCES

[I] R. 1. Vogel stein, U. Mallik, and G. Cauwenberghs, "Silicon
spike-based synaptic array and address-event transceiver," in Proc.
iEEE into Symp. Circuits and Systems, 2004, pp. 385-388.

[2] E. Chicca, D. Badoni, V. Dante, M. D'Andreagiovanni, G. Salina, S.
Fusi, and P. Del Giudice, "A VLSI recurrent network of integrate-and­
fire neurons connected by plastic synapses with long term memory,"
iEEE Trans. Neural Netw., vol. 14, no. 5, pp. 1297-1307, Sep. 2003.

[3] Ebong, I.E.; Mazumder, P., "CMOS and Memristor-Based Neural
Network Design for Position Detection," Proceedings oj the iEEE ,

vol.IOO, no.6, pp.2050,2060, June 2012
[4] Weigel, T.; Gutmann, 1.-S.; Dietl, M.; Kleiner, A.; Nebel, B., "CS

Freiburg: coordinating robots for successful soccer playing," Robotics

and Automation, iEEE Transactions on , vo1.18, no.5, pp.685,699, Oct
2002

[5] Le Dung; Mizukawa, M., "A Pattern Recognition Neural Network
Using Many Sets of Weights and Biases," Computational intelligence
in Robotics and Automation, 2007. ClRA 2007. international

Symposium on , vol., no., pp.285,290, 20-23 June 2007.
[6] Shinzato, P.Y.; Fernandes, L.C.; Osorio, F.S.; Wolf, D.F., "Path

recognition for outdoor navigation using artificial neural networks:
Case study," industrial Technology (lCiT), 20iO iEEE international

ConJerence on , vol., no., pp.1457,1462, 14-17 March 2010
[7] Snider, G.S., "Spike-timing-dependent learning in memristive

nanodevices," Nanoscale Architectures, 2008. NANOARCH 2008.
iEEE international Symposium on, vol., no., pp.85,92, 12-13 June
2008.

[8] Arena, P.; Fortuna, L.; Frasca, M.; Patane, L., "Learning Anticipation
via Spiking Networks: Application to Navigation Control," Neural
Networks, iEEE Transactions on, vo1.20, no.2, pp.202,216, Feb. 2009.

876

