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Abstract-The neural network model of computation has 
been proven to be faster and more energy-efficient than Boolean 

CMOS computations in numerous real-world applications. As a 
result, neuromorphic circuits have been garnering growing 

interest as the integration complexity within chips has reached 
several billion transistors. This article presents a digital 
implementation of a re-scalable spiking neural network (SNN) 
to demonstrate how spike timing-dependent plasticity (STDP) 

learning can be employed to train a virtual insect to navigate 
through a terrain with obstacles by processing information from 
the environment. 

I. INTRODUCTION 

The neural network paradigm has recently been drawing 

increasing interest in the circuit design field because of its 
massive parallelism and potential scalability. Neuromorphic 

circuits, which are usually composed of integrate-and-fire 
(I&F) neuron models [ 1] - [2], can be applied to solve 

problems in many areas, including position detection [3], 
robotic games [4], pattern recognition [5] and path 

recognition [6]. Although these problems can also be solved 

using a general purpose processor with software solutions, 

dedicated circuits have many advantages over general 
purpose processors. For example, a dedicated circuit is more 

power-efficient and needs less area for implementation 

compared with a general purpose processor. This paper 

presents an indirect training algorithm through which a 

learning agent can be trained to find targets and avoid 
obstacles. The training algorithm is based on spike 

timing-dependent plasticity (STDP), which has been proven 

suitable as a solution to learning/training problems by 

previous investigations [7], [8]. According to the STDP rule, 

weights are adjusted based on the time difference between 
pre-synaptic and post-synaptic spikes. The main advantages 
of applying the STDP rule in the design is that the weights do 
not need to be accessed directly and the learning agent can be 

trained indirectly. This design allows a learning agent to be 

trained by receiving signals from its external components 

without accessing any of its internal components. In addition 

to indirect training, direct training is widely used in many 
algorithms. However, under certain circumstances, e.g., when 

tuning devices implanted in human bodies, direct training is 

not feasible. In this case, indirect training becomes the only 

option. 
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This paper presents a virtual insect model that can be 
trained by the proposed indirect training algorithm, and can 
then find a randomly given target on a map. The virtual insect 
is based on a re-scalable neural network consisting of an input 
layer, an output layer and a hidden layer. The SNN is 
re-scalable because the training algorithm has no requirement 
on the size of each layer or the forms of connections between 
neurons within one layer or neurons of different layers. In this 
article, Section II introduces the virtual insect model. Section 
III introduces the training algorithm used in this research 
while Section IV discusses digital circuit implementation of 
the design. Finally, Section V shows the test results of the 
implemented design. 

II. VIRTUAL INSECT MODEL BASED ON STDP 

In this research, the weights were adjusted through STDP. 

STDP modifies synaptic weights based on the time difference 

between the arrival of a pre-synaptic spike and the arrival of a 

post-synaptic spike. As Fig.l shows, depending on the time 
difference, the weight can be either increased or decreased by 

a certain value, which varies exponentially with the time 

difference. 
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Fig. I. An lllustration of Spike Timing-Dependent Plasticity 
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Fig. 2. External Structure of the Virtual Insect 

A virtual insect model was constructed to demonstrate the 
proposed algorithm and design. The virtual insect is initially 
trained off line. After being well trained, the virtual insect can 

find a given target on any map with any form of obstacles. Fig. 

2 shows the external structure of a virtual insect, which 

consists of a target sensor, a terrain sensor and a motor on 
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each of its right and left sides. The target sensor generates a 

signal Starget based on the distance between the sensor and 

the target. The further the virtual insect is from the target, the 

stronger Starget will be. The terrain sensor generates a signal 

Sterrain based on the roughness of the map, with a rougher 

map corresponding to a stronger Sterrain' The two motors 
control the movement of the insect. 

The SNN architecture illustrated in Fig. 3, which includes 

one hundred input neurons, two hundred and fifty-six hidden 

neurons and fifty output neurons, was implemented to 

demonstrate the concept of the indirect training algorithm. 
The structure of the SNN is flexible (i.e. each layer can have 

any number of neurons and can be of any shape, and the 

connections between neurons can be arbitrary) as long as 

there are input layer, hidden layer and output layer as 

demonstrated in Fig. 3. 
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Fig. 3. The Structure of the SNN 
Arrows demonstrate the direction of spikes. 

The speed of the motors and the speed of the insect are 

determined by equation ( 1). Vx and Vy are the speeds of the 

insect along the x-axis and the y-axis, respectively. V is the 

linear speed of the insect, and VL and VR are the speeds of the 

left and right motors, respectively. B is the angle between the 

middle axis of the insect and the x-axis. L, Tmotor and 1] are 

scaling constants, and t{ and tk are the fuing times of the 

output neurons. According to equation ( 1), a motor always 
decelerates unless its corresponding output neuron fues a 

spike. Therefore, the more frequently an output neuron fues, 

the faster the speed of the corresponding motor. Because the 

fuing frequency of an output neuron depends on the weights 
carried by the synapses connecting it to its corresponding 
input neurons, training the insect is essentially equivalent to 

adjusting the weights to the proper values. 

Vx = V* * cos (B) 
Vy = V * sin(B) 

V = 
VL+VR 

2 
b.B = 

VR-VL 
L 

b.VL = -2L+1] * (t == t{) Tmotor 

b.VR = - 2L + 1] * (t == tk) '[motor 

( 1) 

During the training phase, training signals are injected into 
the input neurons. Table I shows all of the 12 possible cases 

of sensor signal combinations. As training signals are 
generated for each case, there are 12 sets of training signals. 

TABLE !. 12 SENSOR SIGNAL CASES 

Case # L Terrain R Terrain L Target R Target 

1 Plain Plain Strong Weak 

2 Plain Rough Strong Weak 

3 Rough Plain Strong Weak 

4 Rough Rough Strong Weak 

5 Plain Plain Equal Equal 

6 Plain Rough Equal Equal 

7 Rough Plain Equal Equal 

8 Rough Rough Equal Equal 

9 Plain Plain Weak Strong 

10 Plain Rough Weak Strong 

1 1  Rough Plain Weak Strong 

12 Rough Rough Weak Strong 

III. TRAINING ALGORITHM 

In general, the actual training process can be divided into 

the following steps. 
l. According to each of the 12 cases in Table I, a set of 

terrain and target signals is generated. 

2. In each case, the desired fuing frequencies for both the 

left and right output layers are calculated using equation (2) . 

In equation (2), VL and VR are the desired firing frequencies 

of the output motor neurons and StrLI StLI StrRI StR are the 
left terrain sensor input, the left target sensor input, the 

right terrain sensor input and the right target sensor input, 

respectively. C1 is set to be larger than C2 to prioritize the 
terrain sensors. 

(2) 

3. In each case, the difference between the actual fuing 

frequency and the desired fuing frequency is calculated 

and an arithmetic average difference for the total 12 cases 

is calculated using equation (3). In equation (3), e(t/) is 

the average difference at time tb vi
' 
and vi are the desired 

and actual fuing frequencies in each case, and Pm is the 

count of total cases. 

J(VP* - VP)2 

I I
p
m 

[ [ 
e(t/) = 

iEO 
p
=l 2 * Pm 

(3) 

4. Based on the change of the average difference between 

the actual firing frequencies and desired target fuing 

frequencies, the training signals for the next iteration are 
generated. In general, when the average difference 

decreases, the training signals will remain unchanged. If 

the average difference increases, the order of the training 

signals will flip. 
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5. The training signals are injected into the some randomly 

selected input neuron pairs, and a new iteration is started. 

When the average difference e is sufficiently small, the 
insect has been well trained. 

IV. CMOS CIRCUIT IMPLEMENTATION 

A CMOS circuit was implemented using 130-nm CMOS 
technology. The full chip has an area of 6.5 mm (width) by 4.8 
rum (height) and a frequency of 22.5 MHz. The 
implementation was accomplished through synthesis and auto 
placement and routing. Fig. 4 shows the floor plan and data 
flow of the designed chip. Due to the large amount of internal 
signals, a signal mux and a training signal generator were 
added to the chip. As shown in Fig. 4, the top level 110 signals 
include the target position and the insect position because 
there are no actual sensors or motors. For a complete design, 
these pins will be replaced by sensor signals and spikes from 
output neurons. 
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Fig. 4. Floor Plan and Data Flow of the Designed Chip 

Table II shows the layout area of each major block and full 
the chip without pads. As shown in Table II, the input layer is 

much larger than the other layers. This is because the training 

(i.e. wrights adjustment) only happens in the input layer. As a 

result, only neurons and synapses in the input layer need to 

have the full functionalities. Neurons and synapses at other 

locations can be simplified and require less area. 

T ABLE II LA your AREA OF THE DESIGN 
Block Area 

Input Layer 4600 urn * 1600 urn 

Hidden Layer 3750 urn * 500 urn 

Output Layer 800 urn * 200 urn * 2 

Testing Controller 900 urn * 400 urn 

Training Controller 4900 urn * 200 urn 

Control Signal Mux 950 urn * 800 urn 

Whole Chip without Pads Approx. 5200 urn * 4000 urn 

Fig. 5 shows the layout of the complete chip with I/O and 
power pads. Each circled block corresponds to a block on Fig. 

4. The full chip has an area of 6.5 rum by 4.8 rum and a 
frequency of 22.5 MHz. The peak power consumption is 

about 13.24 mW and the leakage power is 1.06 uW. 

Fig. 5. Layout View of the Designed Chip 

V. SIMULATIONS AND RESULTS 

The indirect training algoritlun was implemented in 

MATLAB, Verilog and CMOS to train the SNN presented in 

Section II to allow the virtual insect to perform the terrain 
navigation task. Prior to the hardware implementation, the 

performance of the trained insect was first evaluated by 
MA TLAB simulations, as demonstrated in Fig. 6, in which 

the green line and the blue line depict trails of the untrained 

state and the trained state of the virtual insect, respectively. 

The results show that after the SNN was fully trained, the 
virtual bug was capable of avoiding obstacles and obtaining 

the target position. 

Fig. 6. Trails of the virtual insect on uniform terrain and on terrain 
populated by obstacles. [9] 
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Fig. 7. Trail of an Untrained Virtual Insect 

Tests were also performed after implementation. Fig. 7 

shows the trail of an untrained virtual insect on a 1000 by 

1000 map with a target at (500, 220). As shown by Fig. 7, the 

untrained virtual insect wandered randomly within a 100 by 

100 area, which is consistent with the result shown in Fig. 6. 
Fig. 8 shows trails of the virtual insect on a plain map with 

different targets at (500, 1000), ( 1000, 500), ( 1000, 1000), 
(600, 1400) and (750, 150) on a 1500 by 1500 map. In Fig. 8, 

the traces represent trails of the virtual insect, and the isolated 
dots indicate the locations of the targets. As shown in Fig. 8, 
for any random given target, the well-trained virtual insect 
was able to move toward the target and stop at a position close 

to the target. Because the sensor signals were proportional to 

the distance between the virtual insect and the target, those 

signals would become zero when the virtual insect was close 

enough to the target. As a result, the virtual insect would then 
stop at that location other than the target's position. 
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Fig. 8. Trails of the Virtual Insect on a Plain Map 
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Fig. 9. Trails of the Virtual Insect on a Map with a Square Obstacle 

Fig. 9 shows trails of the virtual insect on a map with a 

square obstacle. Targets were chosen to occur at the same 

locations as those in Fig. 8 for comparison. As shown in Fig. 

9, the well-trained virtual insect changed its path because of 
the obstacle, even though the target was in the same location. 
Eventually, the virtual insect was able to stop at a position 

close to the target. Especially, when target was at (750, 150), 

the virtual insect did not pass the area of the obstacle, thus the 
traces are the same in Fig. 8 and Fig. 9. 

VI. CONCLUSION 

This article presents a hardware implementation of an 
SNN with an indirect training algorithm. A virtual insect 
model was developed as an example to demonstrate how this 
approach can be used to solve practical problems. Hardware 
implementation was achieved using Verilog and CMOS 
technology. Future work may include building a complete 
virtual insect with sensors and motors or expanding the virtual 
insect model to solve other types of problems, such as pattern 
recognition and robotic games. 
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