
JOURNAL OF GUIDANCE, CONTROL, AND DYNAMICS

Vol. 27, No. 5, September–October 2004

Online Adaptive Critic Flight Control

Silvia Ferrari
Duke University, Durham, North Carolina 27707

and
Robert F. Stengel

Princeton University, Princeton, New Jersey 08544

A nonlinear control system comprising a network of networks is taught by the use of a two-phase learning
procedure realized through novel training techniques and an adaptive critic design. The neural network controller
is trained algebraically, offline, by the observation that its gradients must equal corresponding linear gain matrices
at chosen operating points. Online learning by a dual heuristic adaptive critic architecture optimizes performance
incrementally over time by accounting for plant dynamics and nonlinear effects that are revealed during large,
coupled motions. The method is implemented to control the six-degree-of-freedom simulation of a business jet
aircraft over its full operating envelope. The result is a controller that improves its performance while unexpected
conditions, such as unmodeled dynamics, parameter variations, and control failures, are experienced for the first
time.

I. Introduction

T HE problem of optimizing a desired metric over time lies at
the basis of many robust and fault-tolerant control and iden-

tification schemes. Dynamic programming (DP) uses the principle
of optimality to find an optimal strategy of action in a nonlinear
environment.1 Classical DP methods discretize the state space and
make a direct comparison of the cost associated with all feasible
trajectories that satisfy the principle of optimality, guaranteeing the
solution of the optimal control problem.2 However, these approaches
lead to a number of computations that grows exponentially with the
number of state variables (“curse of dimensionality”).1 Adaptive
critic designs constitute a class of approximate dynamic program-
ming (ADP) methods that uses incremental optimization, combined
with parametric structures that approximate the optimal cost and
control, to reduce the required computations.3 At any moment in
time, they optimize a short-term cost metric that ensures incremen-
tal optimization of the cost over all future times. A critic network
is used to evaluate the performance of the parametric structure that

Silvia Ferrari is Assistant Professor of Mechanical Engineering and Materials Science at Duke University, where
she directs the Laboratory for Intelligent Systems and Controls (LISC). Currently, her principal research interests
are robust adaptive control of aircraft, learning and approximate dynamic programming, and management of
heterogeneous sensor networks. She received the B.S. degree from Embry-Riddle Aeronautical University and the
M.A. and Ph.D. degrees from Princeton University. She is a member of the Institute of Electrical and Electronics
Engineers and of the American Institute of Aeronautics and Astronautics. She received the Zonta International
Amelia Earhart Fellowship Award (2000 and 2001), the AAS Donald K. “Deke” Slayton Memorial Scholarship
(2001), the ASME Graduate Teaching Fellowship (2001), and the AIAA Guidance, Navigation, and Control Grad-
uate Award (1999).

Robert Stengel is Professor and former Associate Dean of Engineering and Applied Science at Princeton Uni-
versity, where he directs the program in robotics and intelligent systems. Prior to his Princeton appointment, he
was with The Analytic Sciences Corporation, Charles Stark Draper Laboratory, USAF, and NASA. He was a
principal designer of the Apollo lunar module manual control logic, and he contributed to space shuttle control
system design. He received the S.B. degree from Massachusetts Institute of Technology and M.S.E., M.A., and
Ph.D. degrees from Princeton University. He is a Fellow of the Institute of Electrical and Electronics Engineers and
of the American Institute of Aeronautics and Astronautics. He received the AACC John R. Ragazzini Education
Award (2002), AIAA Mechanics and Control of Flight Award (2000), and the FAA’s first annual Excellence in
Aviation Award (1997). He wrote Optimal Control and Estimation (Dover, 1994), Flight Dynamics (in press), and
numerous technical papers.

Received 28 October 2002; revision received 12 November 2003; accepted for publication 30 December 2003. Copyright c© 2004 by Silvia Ferrari and
Robert F. Stengel. Published by the American Institute of Aeronautics and Astronautics, Inc., with permission. Copies of this paper may be made for personal
or internal use, on condition that the copier pay the $10.00 per-copy fee to the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923;
include the code 0731-5090/04 $10.00 in correspondence with the CCC.

approximates the optimal control law, also referred to as an action
network. In this paper, neural networks are the parametric structures
of choice because they easily handle large-dimensional input and
output spaces and can learn in batch or incremental mode.

Adaptive critic designs can be used to solve nonlinear optimal
control problems, without posing restrictions on the form of the dy-
namic equation or the controller a priori. By approximating the DP
solution forward in time, they can learn the optimal control law both
off and online. When plant dynamics and uncertainties are captured
by available models or satisfy appropriate assumptions, the appro-
priate control law and its performance guarantees can be obtained
offline. If significant dynamic and environmental effects arise that
are not anticipated and accounted for a priori, the control system per-
formance can deteriorate and, possibly, compromise safety. Then, a
controller that optimizes its strategy online, subject to these effects,
can improve performance and prevent hazardous conditions in real
time. Although ADP methods, including adaptive critics, have been
shown to converge to the optimal policy over time,3 in practice, it

777

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

http://crossmark.crossref.org/dialog/?doi=10.2514%2F1.12597&domain=pdf&date_stamp=2012-05-23

778 FERRARI AND STENGEL

has proven difficult to obtain convergence quickly enough to affect
performance in real time.4 Also, online learning may deteriorate
knowledge assimilated earlier by the control system about other
operating regions, affecting global stability.

Adaptive critic controllers have been successfully trained offline
for two-axle vehicle steering and speed control,5 agile missile
interception,6 aircraft autolanding and control,7−9 and turbogenera-
tor control.4 Although several architectures have been proposed to
accelerate convergence to the optimal solution (as in Refs. 10–12,
dual heuristic programming (DHP) has been shown to learn quickly
and to alleviate persistence of excitation problems by computing the
correlation between the cost and the individual state elements.4,10,13

In this paper, a DHP architecture is trained online to control the
nonlinear simulation of a business jet aircraft over its full operat-
ing envelope, improving performance during unexpected conditions
such as unmodeled dynamics, parameter variations, and control
failures.

The nonlinear control system, comprising an action and a critic
neural network, is trained by the use of a two-phase procedure. Dur-
ing the first offline training phase, the networks’ size and weights
are determined from earlier control knowledge, that is, multivari-
able control theory, meeting satisfactory safety, and performance
baselines a priori. During the second online phase, the networks are
updated incrementally to improve control response based on the ac-
tual state of the plant, accounting for differences between actual and
assumed dynamic models. Extensive numerical experiments show
that earlier knowledge is always preserved during online learning
and that the neural networks adapt only to improve on a priori per-
formance baselines.

II. Foundations
In this paper, the adaptive critic architecture approximates the

solution of an infinite horizon optimal control problem by means
of neural networks, subject to the real-time dynamics of a continu-
ous plant or simulation. The adaptive critic controller adapts online,
with the plant operating over the entire range of the full state and
command input {x(yc), yc}, or some suitably dense set in the space
denoted by R; thus, it is said to be global. The state of the plant
x and the command input yc both are fed to the controller online
and are unknown before operation. It is assumed that linearized
time-invariant plant models are known a priori for a subset of op-
erating points P ⊂ R. Corresponding linear control data are used
to train and test the action and critic neural networks offline. In a
flight-control problem, such as the one presented in Sec. V, P may
consist of the steady-level flight envelope of the aircraft, and R is
the envelope of all possible maneuvers. The same networks are then
modified incrementally online during rapidly changing, large-angle
maneuvers through a DHP architecture.10

During the first phase, the action and critic neural networks are
trained in a batch mode. The initial controller, which is nonlinear
but is similar in concept to a gain-scheduled controller, can be con-
sidered to be global over P . During the online phase, its knowledge
of the operating space is expanded as new regions are explored in
R. The online optimization is local because the networks are up-
dated with every observed value of the state. However, if improved
performance locally does not deteriorate it elsewhere in R, the on-
line phase amounts to an expansion of the controller’s region of
optimality beyond P . The offline phase is based on linear multivari-
able control, and the online phase is based on approximate dynamic
programming.

A. Problem Statement
Consider the deterministic minimization of a scalar integral func-

tion of the n × 1 plant state x and of the m × 1 control u and a scalar
terminal cost:

J = φ[x(t f)] +
∫ t f

t0

L[x(τ), u(τ)] dτ (1)

The objective is to determine the control law that causes this cost
function to be stationary, subject to the nonlinear dynamics of the

plant:

ẋ(t) = f [x(t), u(t)] (2)

x(t0) given. Plant motions and controls are sensed in the e × 1 output
vector y,

y(t) = h[x(t), u(t)] (3)

Here, it is assumed that perfect measurements are available and that
the output views all elements of the state, that is, y = x. If these
assumptions are not met, the use of an optimal estimator also is
required. The mission goals are expressed by the ec × 1 command
input yc, which can be viewed as some desirable combination of
state and control elements with ec ≤ m.

The action network models the control law, which can be assumed
to be a function solely of the state, without loss of generality. It can
be written as the sum of a nominal and a perturbed effect,

u∗[x∗(t)] = u∗
0

[
x∗

0(t)
] + �u∗[x∗

0(t), �x∗(t)
]

(4)

where x∗(t) = x∗
0(t) + �x∗(t), and (•)∗ denotes the optimal solution.

When the control law depends on parameters and command inputs as
well as the state,14 an augmented state can be defined to include these
additional elements, as described in later sections. At any moment in
time, t0 ≤ t ≤ t f , the minimized value function or cost-to-go V ∗(t),
corresponding to Eq. (1), can be expressed as

V ∗[x∗(t)] = min
u(t)

{
φ
[
x∗(t f)

] −
∫ t

t f

L[x∗(τ), u(τ)] dτ

}
(5)

The critic network evaluates the action network performance by
approximating the derivative of the corresponding cost-to-go with
respect to the state:

λ∗[x∗(t)] ≡ ∂V ∗[x∗(t)]
∂x∗(t)

(6)

This indirect measure of performance corresponds to the costate
vector in the Hamilton–Jacobi–Bellman equation (see Ref. 11) and
is used in the optimality condition, derived in the following section,
to obtain the explicit measure ∂V ∗[x∗(t)]/∂u∗(t).

Single-hidden-layer sigmoidal neural networks are chosen
to model the action and critic functionals. They have input
p(t) = [x(t)T a(t)T]T , where a is a scheduling vector of auxiliary
inputs that informs the neural networks of the dynamically signif-
icant variables in the system. The network adjustable parameters
consist of the input weights W, output weights V, and input and
output biases d and b. The output of the network is computed as the
nonlinear transformation of the weighted sum of the input and the
input bias:

z[p(t)] = VTσ[W p(t) + d] + b (7)

where σ[•] is a vector-valued function composed of individual sig-
moidal functions of the form σ(n) ≡ (en − 1)/(en + 1). This archi-
tecture can approximate any nonlinear function on a compact space
arbitrarily well.15

B. Offline Training Phase
The goal of the offline training phase is to incorporate earlier

control knowledge in the neural network control system. Here,
the earlier knowledge consists of well-known gain-scheduled lin-
ear controllers.16 The training procedure is based on the observa-
tion that, to match the performance of a gain-scheduled controller,
the gradients of the nonlinear neural network controller must equal
the linear gain matrices at selected operating points P , indexed by
j = 1, 2, . . . , p. A basic assumption is that linearized models of the
plant can be obtained from Eq. (2) for the subset P under the as-
sumption of small perturbations about corresponding equilibria and
by neglect of time-varying effects:

�ẋ(t) = F�x(t) + G�u(t) (8)

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

FERRARI AND STENGEL 779

�x(t0) given. The optimization goals are expressed as a quadratic
function of the state and control

J = 1

2

∫ t f

0

[�xT (τ)Q�x(τ) + 2�xT (τ)M�u(τ)

+ �uT (τ)R�u(τ)] dτ (9)

When the plant is subject to continuing disturbance inputs and t f

becomes infinite in the limit, the value of J may still be bounded by
definition of an average cost,

JA = lim
t f → ∞

(J/t f) (10)

that has the same optimality conditions as J (Ref. 14). As t f ap-
proaches infinity, it is reasonable to let the terminal cost, φ[x(t f)],
equal zero. Furthermore, it can be shown17 that the value function,

V ∗[�x∗(t)] = 1
2 �x∗T (t)P(t)�x∗(t) (11)

is optimal for Eqs. (8) and (9), and that P(t) approaches its steady-
state value P. The following closed-form linear-optimal control law
can be derived14:

�u∗(t) = −R−1[GT P + MT]�x∗(t) = −C�x∗(t) (12)

Linear time-invariant control laws that satisfy desired engineering
criteria18 can be designed for P to provide a set of locally optimal
gains and Riccati matrices {C j , P j } j = 1,...,p . The gradient of the ac-
tion network at the j th operating point, which has value in training
the network offline, is found by differentiation of Eq. (4) with respect
to x∗(t) by the use of the result in Eq. (12):

∂u∗[x∗(t)]
∂x∗(t)

∣∣∣∣
x∗

0
,a j

= ∂�u∗(t)
∂�x∗(t)

∣∣∣∣
�x∗ = 0,a j

= −C j , ∀ j (13)

C j is known from the linear quadratic (LQ) optimal gain matri-
ces, and a j is the scheduling vector evaluated at the j th operating
condition. In infinite horizon problems, the structure of the value
function is independent of time; therefore, a single time-invariant
critic network can be used to approximateλ∗[x∗(t)], or simplyλ∗(t)
[Eq. (6)]. The LQ optimal value function, Eq. (11), can be differen-
tiated twice with respect to the state to seek the following derivative,

∂λ∗[x∗(t)]
∂x∗(t)

∣∣∣∣
x∗

0
,a j

= ∂2V ∗[�x∗(t)]
∂�x∗(t)2

∣∣∣∣
�x∗ = 0,a j

= P j , ∀ j (14)

where, P j is known and is used to train the critic offline.
Under the stated assumptions, the gradient ∂z[p(t)]/∂x(t) is

known for both the critic and the action network. In addition, the
following input/output condition applies:

z[x(t), a(t)]x∗
0
,a j = 0, ∀ j (15)

The size and parameters of the nonlinear neural networks are de-
termined in one step by solution of sets of linear equations, such
that the requirements in Eqs. (13–15) are matched exactly over P ,
as explained in Ref. 19. This phase provides an excellent starting
point for the online phase, retaining the characteristics of the linear
designs for small perturbations.

C. Online Training by a DHP Adaptive Critic
The online logic is implemented in discrete time through a

DHP incremental optimization scheme that is based on the recur-
rence relation of dynamic programming. During each time interval
�t = tk + 1 − tk , the action and critic networks are adapted to ap-
proximate more closely the optimal control law and value function
derivatives, respectively. Adaptation criteria are derived from the
recurrence relation by discretization of the infinite horizon optimal
control problem.2 The recurrence relation3 is used to predict the
value function over time

V [x(tk)] = L[x(tk), u(tk)] + V [x(tk + 1)] (16)

The control u(tk) is defined as the function of x(tk) that min-
imizes the right-hand side of Eq. (16) for any x(tk). Howard
shows3 that when the function V [x(tk)] is calculated from Eq. (16),
and the control law is adjusted to minimize the right-hand side
of Eq. (16), the control law improves at every iteration (as in
Ref. 20).

At time tk , the value function is stationary provided the optimality
condition is satisfied

∂V [x(tk)]

∂u(tk)
= ∂L[x(tk), u(tk)]

∂u(tk)
+ λ[x(tk + 1)]

∂x(tk + 1)

∂u(tk)
= 0 (17)

A recurrence relation for the critic is obtained by differentiation of
Eq. (16) with respect to the state:

λ[x(tk)] ≡ ∂V [x(tk)]

∂x(tk)
= ∂L[x(tk), u(tk)]

∂x(tk)

+ ∂L[x(tk), u(tk)]

∂u(tk)

∂u[x(tk)]

∂x(tk)
+ λ[x(tk + 1)]

∂x(tk + 1)

∂x(tk)

+λ[x(tk + 1)]
∂x(tk + 1)

∂u(tk)

∂u[x(tk)]

∂x(tk)
(18)

The DHP critic approximatesλ[x(t)]; thus, it can be used to compute
λ[x(tk + 1)] in Eqs. (17) and (18), once the predicted state x(tk + 1) is
obtained from the model of the plant [Eq. (2)].

III. Online Phase Implementation
The DHP criteria are implemented to adapt the action and critic

networks, as shown by the flow charts in Figs. 1 and 2. The neural
network weights are updated to minimize the mean-squared error
between a desired output or target, denoted by (•)D , and the net-
work’s output, z[p(tk)], for a known input p(tk). Equations (17) and
(18) are used to generate the action and the critic targets, uD(tk)
and λD(tk), respectively. During the first time interval (t1 − t0), the
weights obtained offline are used before the online update. Later,
the weights obtained online during (tk − tk − 1) are used as earlier
weights during (tk + 1 − tk).

A. Action and Critic Network Target Generation
The action network target, uD(tk), is obtained by solution of

the optimality condition, that is, the set of nonlinear equations in
Eq. (17). A guess to the solution, uD(tk)

G , is provided by the ac-
tion network. Subsequently, it is perturbed by an established algo-
rithm, for example, Newton–Raphson, until the stopping condition
is met. Based on the prediction of x(tk + 1),λ(tk + 1) is computed
by the critic network, as shown in Fig. 1. Once the action net-
work has been updated, the critic’s desired output is computed from
Eq. (18) based on the exact values of u(tk) and ∂u(tk)/∂x(tk). The
derivatives ∂L[•]/∂x(tk) and ∂L[•]/∂u(tk) are computed analyti-
cally from L[x(tk), u(tk)]. The transition matrices, ∂x(tk + 1)/∂u(tk)
and ∂x(tk + 1)/∂x(tk), are obtained numerically from Eq. (2) because
the model is not entirely analytical and utilizes tabulated data.

B. Online Training Algorithm
The online training algorithm minimizes an error functin E with

respect to w, which is a vector of ordered weights w�, indexed by
� = 1, 2, . . . :

E(w) ≡ 1
2 ‖zD − z(w)‖2 (19)

Because the networks are updated every time a value of x is ob-
served, this error minimization is kept local. Based on the idea of
backpropagation21 at each epoch i , the online training algorithm
modifies each weight w

(i)
� by a small increment �w

(i)
� , based on the

derivative ∂ E(w)/∂w�, such that

w
(i + 1)

� = w
(i)
� + �w

(i)
� (20)

To be viable in applications, the online phase must be reliable
as well as effective. It must perform at least as well as the offline

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

780 FERRARI AND STENGEL

Fig. 1 DHP action network adaptation during ∆t = tk + 1 −− tk.

design, and it must improve performance quickly to impact a task,
for example, an aircraft maneuver, while it is still taking place. A
necessary condition for reliability is that the network update algo-
rithm use earlier network weights to initiate the minimization of the
error function E . Then, to be effective, the algorithm must decrease
the network error significantly at the onset of training, that is, in a
few epochs, without disregarding the earlier weights. Because of the
high-dimensional nature of many applications, the neural networks
implemented typically are very large and have parameters charac-
terized by different orders of magnitude, causing the derivatives to
have highly dissimilar sizes.

A modified resilient backpropagation algorithm (RPROP) is used
to meet the desired objectives. Like the original RPROP algorithm
(presented in Ref. 22), it considers the temporal behavior of the
gradients’ signs; therefore, it has low memory requirements and no
dependence on the size of the derivatives. The individual size of
each weight’s increment, denoted by ��, is increased by a factor η+

when the algorithm is converging to a minimum and the derivative
is not changing sign, whereas it is decreased by a factor η− when
the algorithm is jumping over a local minimum and the derivative
is changing sign. This process accelerates convergence in shallow
regions and slows the search when local minima are missed. Once all
�� are adjusted, each weight is modified in the direction of gradient
descent. When the error derivative changes sign, indicating that a
minimum was missed, the weight w(i + 1)

� is brought back to its earlier
value w

(i − 1)

� by a backtracking epoch.22

Backtracking is a key algorithmic feature that allows the search to
remain local. Another crucial element is the initial increment value
�

(0)

� . The assignment of all initial increments equal to the same

constant value, for example, 0.1, for weights of dissimilar size, as
suggested in Ref. 22, is equivalent to forgetting the starting net-
work weights. For this reason, the MATLAB® 5.3 implementation
of Ref. 22 sends the training error to very high values before it
converges to satisfactory weights. The modified RPROP takes ad-
vantage of earlier weights, that is, obtained during the preceding
time step, choosing initial increments that are commensurate with
a fraction fw of the earlier weights and perturbing them by f0 to
account for zero weights:

�
(0)

� = fw|w�| + f0 (21)

This weight-update routine is used for the action and the critic net-
works by letting zD = uD(tk) in the action update and zD =λD(tk)
in the critic update. The numerical studies in Sec. V show that, with
these modifications, the network error always decreases at the onset
of training, without first undergoing a significant change.

IV. Adaptive Critic Proportional–Integral Neural
Network Control Design

The nonlinear control structure is obtained by simulation of that
of an existing multivariable linear controller, by substitution of the
linear gains by nonlinear neural networks as suggested in Refs. 19
and 23, to incorporate earlier control knowledge. In addition, a critic
neural network is included to implement the DHP online phase
(Sec. II.C). The design assumptions are presented in Sec. II, and the
method is illustrated for a proportional–integral (PI) controller.14

The feedback gain matrix CB , the forward gain matrix CF , and the

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

FERRARI AND STENGEL 781

Fig. 2 DHP critic network
adaptation during ∆t =tk + 1 −−
tk.

command-integral gain matrix CI , are computed to minimize the
following cost function:

J = lim
t f → ∞

∫ t f

0

L[xa(τ), ũ(τ)] dτ = lim
t f → ∞

∫ t f

0

1

2

[
xT

a (τ)Qxa(τ)

+ 2 xT
a (τ)Mũ(τ) + ũT (τ)Rũ(τ)

]
dτ (22)

where xa represents an augmented state that includes the state devi-
ation x̃ and the output error’s time integral ξ, that is, xa ≡ [x̃T ξT]T ,
where x̃ ≡ x − xc. The output error ỹ and the control deviation ũ are
similarly defined. The set point (xc, uc) is a function of the command
input yc (Ref. 14). The LQ law [Eq. (12)] provides for the optimal
control in terms of the newly defined deviations:

ũ(t) = −Caxa(t) = −CB x̃(t) − CIξ(t) (23)

The gains and the matrix Pa are obtained by solution of a matrix
Riccati equation (see Ref. 14) formulated in terms of xa and ũ. The
weighting matrices Q, M, and R, are designed with implicit model
following, based on an ideal model that satisfies established design
criteria.24,25

In the nonlinear control structure, each linear gain matrix is re-
placed by a nonlinear control network, NNB for CB, NNF for CF ,
and NN I for CI , as shown in Fig. 3. In addition to the scheduling
vector a, the networks NNB, NNF , and NN I are provided with x̃, yc,
and ξ, respectively. Each network contributes to the total control,

u(t) = uc(t) + �uB(t) + �uI (t)

= NNF [yc(t), a(t)] + NNB[x̃(t), a(t)] + NN I [ξ(t), a(t)]

(24)

where ũ = �uB + �uI is the control to be optimized.

Fig. 3 Action critic neural network controller.

The action network NNA, approximates the minimizing control
law:

ũ(t) = NNA[xa(t), a(t)] (25)

Given the same inputs, the critic network NNC , computes the deriva-
tive of the value function V [xa(t)] corresponding to Eq. (22):

λa(t) ≡ ∂V [xa(t)]

∂xa(t)
= NNC [xa(t), a(t)] (26)

The scheduling variable generator (SVG) contains algebraic
equations that produce a based on yc and an exogenous vector e of
measured variables. The command state generator (CSG) provides
secondary elements of the state that are compatible with yc. Both
blocks are obtained from the governing equations (2), according to
well-established techniques.25 The action and critic networks are
trained offline by the use of {CB j , CI j , Pa j } j , j ∈ P (see Ref. 19).
Equations (17) and (18) are reformulated in terms of xa and ũ, to
train the action and the critic networks on line.

V. Flight Control Simulation and Results
The adaptive controller is implemented for the control of a

six-degree-of-freedom simulation of a business jet aircraft.26−29

The simulated aircraft explores its full flight envelope,
R = {V, H, γ, µ, β}, that is, the set of all possible combinations
of the enclosed variables.

The control design is based on the state vector, x =
[V γ q θ r β p µ]T , comprising airspeed V (meters per sec-
ond), path angle γ (radians), pitch rate q (radians), pitch angle θ (ra-
dians), yaw rate r (radian per second), sideslip angle β (radians), roll
rate p (radian per second), and bank angle µ (radians). The inde-
pendent controls being generated are throttle δT (percent), stabilator
δS (radians), aileron δA (radians), and rudder δR (radians), that is,
u = [δT δS δA δR]T . The command input, yc = [Vc γc µc βc]T ,
contains the state elements that, given the altitude H (meters),
uniquely specify a longitudinal–lateral-directional steady maneu-
ver, for example, a coordinated turn, postulating φ̇c = θ̇c = 0 with
φ as the Euler roll angle. Because three-dimensional maneuvering
flight is considered, the SVG and CSG blocks in Fig. 3 are designed
with nonlongitudinal, non-level flight angular and kinematic rela-
tions and spherical trigonometry.27

The forward neural network NNF is trained offline to approximate
the aircraft trim map,30 and it is held fixed online to compute the
control settings corresponding to yc, based on the aircraft model,
Eq. (2). The action and critic networks, NNA and NNC , are trained
algebraically offline by the use of the linear controllers obtained for
a set P of 34 steady-level flight conditions.19,25 During the online
phase, the action and critic networks are adapted to improve on
their performance in R. The adaptation time interval �t is chosen
equal to or greater than the Runge–Kutta (RK)-integration time step.
During every 0.1-s time interval, the critic and action networks are
updated by the modified RPROP algorithm based on the respective
targets, ũD and (λa)D . The update parameters defined by the user
are η+ = 1.2, η− = 0.5[22], fw ∼O(10−5), and f0 � 1.

The performance of the modified RPROP algorithm is com-
pared to that of the MATLAB® 5.3 RPROP-based learning function

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

782 FERRARI AND STENGEL

Fig. 4 Performance comparison between the MATLAB® resilient
backpropagation algorithm and its modified version, for the action net-
work training at t = 0.2 s.

“trainrp” in Fig. 4, where the action network update at tk = 0.2 s
is shown over 150 epochs. These results are representative of sev-
eral simulations involving the update of action and critic neural
networks at different time steps. Typically, the modified algorithm
begins decreasing the error by the third epoch and approaches the
same performance as the MATLAB function in one-half the num-
ber of epochs. Thus, only a few epochs are needed to decrease the
network error significantly during one time step. Further studies
confirm that the modified RPROP better preserves initial weights
and avoids overfitting.25

The termination rule stops the online training of the action and
the critic network after the mean-squared measure of the network
error, [zD − z(w)], has decreased by 10% and at least three epochs
have elapsed. When more than three epochs are needed to decrease
the network error by this amount, the terminating value of �� is
saved and used as �

(0)

� for the next time interval, for ∀ �. Typically,
the modified RPROP algorithm runs for several epochs during the
first two or three time intervals, for example, 0.3 s, because it needs
to adjust the increment size (Sec. III.B.); during later time intervals,
three epochs are sufficient to decrease the network error by 10%.

In the numerical studies, the controller learns from the
simulation’s nonlinear and coupling effects that were missed by
the linearizations and adapts to unforeseen failures and parameter
variations. The adaptation’s progress is monitored by recording the
optimality condition [Eq. (17)] and the mean-squared action- and
critic-network errors at every time step. The state response to step
command inputs is also used to assess the controller’s overall perfor-
mance. Extensive numerical experiments show that the adaptation
improves performance quickly enough to impact a new maneuver
while it is still taking place. Furthermore, while adapting to new
non-steady flight conditions, the adaptive controller preserves, and
only improves on, any knowledge already assimilated in R.

A. Case 1: Adaptive Control During a Coupled Maneuver
The aircraft response is considered during a large-angle asymmet-

ric maneuver, for which the longitudinal–lateral–directional cou-
pling effects neglected by the offline designs are significant. Ini-
tially, the aircraft is flying steady and level, at a nominal airspeed
V0 of 95 m/s and an altitude H0 of 2000 m, where (V0, H0) ⊂ P .
At time t = 0, a step command consisting of a 5-deg climb angle
and 30-deg roll angle is initiated, as would be required to perform
a climbing steady turn. (The other commands remain equal to their
nominal value.) The response of the aircraft subject to the adaptive
controller is plotted with a solid line in Fig. 5, together with that
of the aircraft subject to the controller with parameters held fixed,
represented by a dashed line. The adaptation reduces the amplitude
of the velocity, path angle, and sideslip oscillations and displays the
desired transient characteristics specified through implicit model
following.24,25 The adaptive controller’s time history is compared
to that of the fixed controller in Fig. 6, showing a minor difference
in control usage. Following this maneuver, additional tests show

Fig. 5 Comparison between the adaptive critic neural network con-
troller and the neural network controller with parameters held fixed at
(V0, H0) = (95 m/s, 2 km), subject to 5-deg climb angle and 30-deg roll
angle step command.

Fig. 6 Comparison between the online trained adaptive critic neural
network control history and the fixed-parameter neural network control
history subject to 5-deg climb angle and 30-deg roll angle step command
at (V0, H0) = (95 m/s, 2 km).

Fig. 7 Comparison between the online trained adaptive critic neural
network controller and the fixed-parameter neural network controller
subject to −−70-deg roll angle step command at (V0, H0) = (160 m/s,
7 km).

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

FERRARI AND STENGEL 783

that the weights of the action and critic networks have undergone
a small change and that their gradients over P have remained very
close to the corresponding linear gains learned offline, with a total
mean-squared difference of O(10−4). This indicates that, although
it has improved performance over this new region of the state space
(Fig. 5) where µ = 0, the adaptive controller has preserved earlier
knowledge of the optimal controllers over the steady-level flight
envelope P .

B. Case 2: Adaptive Control During a Large-Angle Maneuver
The adaptive controller is implemented on a large-angle maneu-

ver for which the nonlinear and coupling effects are so significant
that they would otherwise lead to closed-loop instability. To demon-
strate this capability, a −70-deg turn is commanded while the air-
craft is flying steady and level at the nominal airspeed and altitude
of 160 m/s and 7000 m. At this angle, the aircraft cannot produce
sufficient lift to maintain altitude, and the coupled dynamics become

Fig. 8 Comparison between the adaptive critic neural network control
history and the fixed-parameter neural network control history subject
to −−70-deg roll angle step command at (V0, H0) = (160 m/s, 7 km).

Fig. 9 Comparison between the adaptive and the fixed-parameter neural controllers in the presence of multiple control failures.

so significant as to compromise any decoupled control design; also,
it becomes more difficult to coordinate the turn. Although not a nor-
mal maneuver, these conditions could come about in an emergency
situation.

With control parameters held fixed, represented by a dashed line in
Fig. 7, the aircraft departs from controlled flight. The roll and climb
angles increase beyond acceptable limits, and the aircraft enters a
stall. At this point, the simulation is not a faithful representation of
the aircraft dynamics because poststall aerodynamic effects are not
modeled. Still, the uncoupled control design causes the aircraft to
gyrate wildly, and it is not capable of recovering from this maneuver.
Figure 7 also shows the response of the adaptive controller (solid
line) for the same flight conditions. In this case, the control system
learns from the nonlinear aircraft dynamics and adjusts the network
weights on line, preventing loss of stability.

Under challenging circumstances, the tendency is for the system
to demand unreasonable control usage. Soft control bounds are eas-
ily accounted for in the adaptive critic architecture by allowance of
the weighting matrix R to vary exponentially with respect to control
inputs that exceed physical limitations.25 The throttle is bounded
between 0 and 100%. The stabilator, aileron, and rudder deflections
cannot exceed ±0.6 rad. The time histories of the fixed and adaptive
controllers that produce the aircraft response in Fig. 7 are plotted in
Fig. 8. The adaptive controller improves performance considerably
over time and learns the control bounds online. The result is that
the adaptive controller can sustain the desired banked turn, whereas
the fixed controller, based on uncoupled linear designs, leads to a
hazardous maneuver.

C. Case 3: Adaptive Control During Multiple Control Failures
The capability of the adaptive control system to handle a near-

emergency situation is considered by the simulation of control fail-
ures during an approach to landing. The aircraft, initially flying
at (V0, H0) = (100 m/s, 3000 m), begins its final approach by de-
creasing its velocity and performing a descending turn with −6-deg
climb angle and 50-deg roll angle for 10 s. During this time, mul-
tiple control failures occur, impairing control of the aircraft. Both
engines produce no thrust; the rudder and stabilator are stuck at
0 deg for 5 s ≤ tk ≤ 10 s, and the rudder is stuck at −34 deg for
0 s ≤ tk ≤ 5 s. The airplane enters a steep dive with a large roll angle

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

784 FERRARI AND STENGEL

and fast accelerations. This critical situation is simulated to com-
pare the adaptive and the fixed control systems during a recovery
maneuver with reduced but sufficient control authority. Reduced
control power prevents precise command-input tracking over short
time periods. Therefore, improved performance is demonstrated by
reduced oscillations and a smaller accumulated cost [Eq. (1)].

Assume that, 10 s after the initial failures, the simulated pilot or
guidance logic becomes aware of the failures and initiates a wings-
level climb to avoid obstacles on the ground. In the meantime, the
stabilator has become fully operational, and the available throttle
is increased to 50% (as by the restoration of full thrust to a single
engine); the rudder is stuck at −15 deg. First, the wings are brought
back to level by a 0-deg roll angle command for 2 s. Then, an airspeed
of 95 m/s and a 5-deg path angle are commanded to climb for 3 s. The
response of the adaptive controller is compared to that of the con-
troller with fixed parameters, with the integrator reset state to zero in
both cases to avoid the phenomenon known as integrator windup.31

Fig. 10 Adaptive and fixed-parameter neural control histories with
50%-available thrust and the rudder stuck at −−15 deg.

Fig. 11 Comparison between the adaptive neural controller and the fixed-parameter neural controller in the presence of aircraft parameter variations
at (V0, H0) = (200 m/s, 11 km).

Figure 9 shows that the adaptation improves the command-input
response, at times by more than 30%, even though these conditions
are being experienced for the first time. All relevant state histories,
including total airspeed, are improved on by the adaptive critic ar-
chitecture. Despite less throttle usage, the velocity and path angle
are followed more closely because the adaptive-controlled aircraft
experiences smaller angles of attack and sideslip and, hence, less
drag. The adaptation also diminishes the amplitude of the roll and
heading-angle oscillations. The adaptive and fixed-control time his-
tories are shown in Fig. 10. Because of the limited (50%) available
thrust, the throttle-input profile is significantly modified, and its us-
age is more evenly distributed over the time interval. With the rudder
stuck at −15 deg, the lateral–directional response is improved by
adaptation of the aileron control input.

D. Case 4: Adaptive Control in the Presence of Parameter Variations
The adaptive controller is tested for a case in which the parame-

ters of the simulated aircraft have changed with respect to the model
[Eq. (2)] used for offline training. All control effectors are assumed
to be unfailed. The pitch-rate and angle-of-attack-rate effects of the
controls are decreased by 50%, and the static and directional stabil-
ity coefficients are reduced by 20 and 30%, respectively. With the
original aircraft parameters unchanged, that is, perfect modeling,
the response of the fixed controller subject to a small-angle com-
mand input can be considered to be optimal in the neighborhood
of a design point with (V0, H0) ⊂ P . Because of modified aerody-
namic effects, the actual dynamic characteristics differ from those
accounted for by the linear design. Therefore, the performance of
the fixed controller is degraded with respect to its original baseline,
as shown in Figs. 11 and 12.

Although the DHP adaptive critic architecture employs an im-
perfect model, it can learn about the new dynamics through its
knowledge of the actual state. The simulated aircraft with modified
parameters undergoes the small-angle maneuver shown in Fig. 11,
near the design point with (V0, H0) = (200 m/s, 11,000 m). After
experiencing a command input of 2-deg path angle, 5-deg roll, and
3-deg sideslip for 5 s, the adaptive controller’s performance begins
to approach the original baseline. Figure 12 shows that, over time,
the adaptation reduces the control usage with respect to the fixed

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

FERRARI AND STENGEL 785

Fig. 12 Control history of the adaptive neural controller and the fixed-parameter neural controller in the presence of aircraft parameter variations
at (V0, H0) = (200 m/s, 11 km).

controller subject to the modified parameters and even subject to the
original aircraft parameters, that is, with perfect modeling. The ac-
tion and critic networks learn how to minimize the cost-to-go online,
in the presence of coupling and nonlinear effects, control failures,
and parameter variations that were unaccounted for a priori, without
unlearning previous information.

VI. Conclusions
Advances in neural network training techniques and adaptive

critic methods are presented and incorporated in a novel approach
to neural network control design. The nonlinear control system is
trained in two phases. An offline phase provides for reliability, and
an online phase improves performance subject to actual plant dy-
namics. Both phases are founded on optimal control theory and are
realized with significant computational savings through a novel al-
gebraic training approach and a modified online training algorithm.
The adaptive controller is successfully implemented on a full-scale
aircraft simulation. Both the action and critic neural networks learn
newly available information online, while retaining their baseline
performance. The result is a flight control system that improves per-
formance with respect to its offline specifications when subject to
unexpected conditions such as unmodeled dynamics, control fail-
ures, and parameter variations.

Acknowledgment
This research has been supported by the Federal Aviation Admin-

istration and NASA under FAA Grant 95-G-0011.

References
1Bellman, R. E., Dynamic Programming, Princeton Univ. Press, Prince-

ton, NJ, 1957.
2Kirk, D. E., Optimal Control Theory: An Introduction, Prentice–Hall,

Englewood Cliffs, NJ, 1970, Chaps. 1–3.
3Howard, R., Dynamic Programming and Markov Processes, MIT Press,

Cambridge, MA, 1960, pp. 42, 43.
4Venayagamoorthy, G. K., Harley, R. G., and Wunsch, D. C., “Compar-

ison of Heuristic Dynamic Programming and Dual Heuristic Programming
Adaptive Critics for Neurocontrol of a Turbogenerator,” IEEE Transactions
on Neural Networks, Vol. 13, No. 3, 2002, pp. 764–773.

5Lendaris, G. G., Schultz, L., and Shannon, T. T., “Adaptive Critic Design
for Intelligent Steering and Speed Control of a 2-Axle Vehicle,” Proceedings
of the International Joint Conference on Neural Networks, Inst. of Electrical
and Electronics Engineers, Piscataway, NJ, 2000.

6Han, D., and Balakrishnan, S. N., “Adaptive Critic Based Neural Net-
works for Control-Constrained Agile Missile Control,” Proceedings of the
American Control Conference, Inst. of Electrical and Electronics Engineers,
Piscataway, NJ, 1999, pp. 2600–2604.

7Saini, G., and Balakrishnan, S. N., “Adaptive Critic Based Neurocon-
troller for Autolanding of Aircraft,” Proceedings of the American Control
Conference, Inst. of Electrical and Electronics Engineers, Piscataway, NJ,
1997, pp. 1081–1085.

8Balakrishnan, S. N., and Biega, V., “Adaptive-Critic-Based Neural Net-
works for Aircraft Optimal Control,” Journal of Guidance, Control, and
Dynamics, Vol. 19, No. 4, 1996, pp. 893–898.

9KrishnaKumar, K., and Neidhoefer, J., “Immunized Adaptive Critics for
Level-2 Intelligent Control,” Proceedings of the IEEE International Confer-
ence on Systems, Man and Cybernetics, Vol. 1, IEEE Publications, Piscat-
away, NJ, 1997, pp. 856–861.

10Werbos, P. J., “Approximate Dynamic Programming for Real-Time
Control and Neural Modeling,” Handbood of Intelligent Control, edited
by D. A. White and D. Sofge, Van Nostrand Reinhold, New York, 1992,
pp. 493–526.

11Prokorov, D. V., and Wunsch, D. C., “Adaptive Critic Designs,” IEEE
Transactions on Neural Networks, Vol. 8, No. 5, 1997, pp. 997–1007.

12Si, J., and Wang, Y. -T., “On-Line Learning Control by Association and
Reinforcement,” IEEE Transactions on Neural Networks, Vol. 12, No. 2,
2001, pp. 264–276.

13Lendaris, G. G., and Shannon, T., “Application Considerations for the
DHP Methodology,” Proceedings of the International Joint Conference on
Neural Networks, Inst. of Electrical and Electronics Engineers, Piscataway,
NJ, 1998.

14Stengel, R. F., Optimal Control and Estimation, Dover, New York, 1994.
15Barron, A. R., “Universal Approximation Bounds for Superposition of

a Sigmoidal Function,” IEEE Transactions on Information Theory, Vol. 39,
No. 3, 1993, pp. 930–945.

16Shamma, J. S., and Athans, M., “Guaranteed Properties of Gain Sched-
uled Control for Linear Parameter-Varying Plants,” Automatica, Vol. 27,
No. 3, 1991, pp. 55–56.

17Åström, K. J., and Stewart, G. W., “Solution of the Matrix Equa-
tion AX + X B = C ,” Communications of the ACM, Vol. 15, Feb. 1972,
pp. 820–826.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

786 FERRARI AND STENGEL

18Stengel, R. F., and Marrison, C., “Design of Robust Control Systems for
Hypersonic Aircraft,” Journal of Guidance, Control, and Dynamics, Vol. 21,
No. 1, 1997, pp. 58–63.

19Ferrari, S., and Stengel, R. F., “Classical/Neural Synthesis of Nonlinear
Control Systems,” Journal of Guidance, Control, and Dynamics, Vol. 25,
No. 3, 2002, pp. 442–448.

20Ferrari, S., and Stengel, R. F., “Model-Based Adaptive Critic Designs,”
Learning and Approximate Dynamic Programming, edited by J. Si, A. Barto,
and W. Powell, Wiley (in press).

21Werbos, P. J., “Backpropagation Through Time: What It Does and How
to Do It,” Proceedings of the IEEE, Vol. 78, No. 10, 1990, pp. 1550–1560.

22Reidmiller, M., and Braun, H., “A Direct Adaptive Method for Faster
Backpropagation Learning: The RPROP Algorithm,” Proceedings of the
IEEE International Conference on NN (ICNN), Inst. of Electrical and Elec-
tronics Engineers, Piscataway, NJ, 1993.

23Narendra, K. S., and Parthasaranthy, K., “Identification and Control of
Dynamical Systems Using Neural Networks,” IEEE Transactions Neural
Networks, Vol. 1, No. 1, 1990, pp. 4–27.

24Huang, C., and Stengel, R. F., “Restructurable Control Using
Proportional–Integral Model Following,” Journal of Guidance, Control, and
Dynamics, Vol. 13, No. 2, 1990, pp. 303–309.

25Ferrari, S., “Algebraic and Adaptive Learning in Neural Control Sys-
tems,” Ph.D. Thesis, Dept. of Mechanical and Aerospace Engineering,
Princeton Univ., Princeton, NJ, 2002.

26Stengel, R. F., Flight Dynamics, Princeton Univ. Press, Princeton (in
press).

27Kalviste, J., “Spherical Mapping and Analysis of Aircraft Angles for
Maneuvering Flight,” Journal of Aircraft, Vol. 24, No. 8, 1987, pp. 523–530.

28Etkin, B., Dynamics of Atmospheric Flight, Wiley, Toronto, 1972.
29Nelson, R. C., Flight Stability and Automatic Control, McGraw–Hill,

New York, 1989.
30Ferrari, S., and Stengel, R. F., “Algebraic Training of a Neural Network,”

Proceedings of the American Control Conference, Inst. of Electrical and
Electronics Engineers, Piscataway, NJ, 2001, pp. 1605–1610.

31Friedland, B., “Observers,” The Control Handbook, edited by W. S.
Levine, CRC Press, Boca Raton, FL, 1996, pp. 607–618.

D
ow

nl
oa

de
d

by
 C

O
R

N
E

L
L

 U
N

IV
E

R
SI

T
Y

 o
n

Ja
nu

ar
y

16
, 2

01
8

| h
ttp

://
ar

c.
ai

aa
.o

rg
 |

D
O

I:
 1

0.
25

14
/1

.1
25

97

