
INTEGRATION, the VLSI journal 54 (2016) 109–117
Contents lists available at ScienceDirect
INTEGRATION, the VLSI journal
http://d
0167-92

☆This
1059177

n Corr
E-m

hudi@u
xz70@d
sferrari@
journal homepage: www.elsevier.com/locate/vlsi
Invited paper
Digital implementation of a virtual insect trained by spike-timing
dependent plasticity$

P. Mazumder a,n, D. Hu a, I. Ebong a, X. Zhang b, Z. Xu b, S. Ferrari b

a University of Michigan, Ann Arbor, MI 48109, USA
b Duke University, Durham, NC 27708, USA
a r t i c l e i n f o

Article history:
Received 25 June 2015
Accepted 18 January 2016
Available online 13 February 2016

Keywords:
Spike timing dependent plasticity
Neural network
x.doi.org/10.1016/j.vlsi.2016.01.002
60/& 2016 Elsevier B.V. All rights reserved.

work was supported by the National Science F
and CCF Grant 1421467.
esponding author.
ail addresses: pinakimazum@gmail.com (P. Ma
mich.edu (D. Hu), idong@eecs.umich.edu (I. E
uke.edu (X. Zhang), dec.ziyer@gmail.com (Z. X
duke.edu (S. Ferrari).
a b s t r a c t

Neural network approach to processing have been shown successful and efficient in numerous real world
applications. The most successful of this approach are implemented in software but in order to achieve
real-time processing similar to that of biological neural networks, hardware implementations of these
networks need to be continually improved. This work presents a spiking neural network (SNN) imple-
mented in digital CMOS. The SNN is constructed based on an indirect training algorithm that utilizes
spike-timing dependent plasticity (STDP). The SNN is validated by using its outputs to control the motion
of a virtual insect. The indirect training algorithm is used to train the SNN to navigate through a terrain
with obstacles. The indirect approach is more appropriate for nanoscale CMOS implementation synaptic
training since it is getting more difficult to perfectly control matching in CMOS circuits.

& 2016 Elsevier B.V. All rights reserved.
1. Introduction

The neural network approach to data processing has undergone
continued research and development even with the widespread
success of the von Neumann architecture, traditionally sequential
in nature. Recent widespread advancement of the von Neumann
architecture to utilize multi-core processors [2] is similar to the
neural network approach, providing a much needed boost to the
area. The difference between the parallelism of multi-core pro-
cessors and that of neural networks is the latter uses much less
complex processing elements, therefore, allowing opportunities
for massively parallel structures. Hardware neural networks or
neuromorphic circuits have been around for quite some time with
proposals that span both digital CMOS and analog CMOS approa-
ches [3–6]. Specific VLSI reviews and methodologies are provided
in [7,8]. Although neural hardware have been proposed, imple-
mented, and commercialized, their widespread adoption is still
unrealized. Neural software implementations running on digital
computers are much more prevalent, leaving hardware adoption
behind. Hardware implementations have found niche uses in
peripheral devices and various subsystems [3]. Software
oundation under ECCS Grant

zumder),
bong),
u),
implementations have the advantage of ease of programming
through well-known languages like C and Cþþ , large software
engineering support due to a lower barrier of entry for software
engineers than those for hardware engineers, high precision cal-
culations if the processing capabilities are present, and more
flexibility regarding the implemented algorithm. Even with these
advantages, hardware implementations are still sought after
because of the speed associated with hardware computing; reali-
zation of adequate neural processors or neurocomputers will
enable applications that require real-time processing, feedback,
and learning. The most promising implementations use the digital
components and have granted programmable neurocomputers
like CNAPS [9] and SYNAPSE-1 [10]. Although neurocomputers are
very powerful, efforts have been made to scale down applications
to even less powerful machines, ones that run on battery and do
not rely on a large number of processing elements. These efforts
have led to the widespread appeal of spiking neural networks
[4,11–15].

Spiking neural network (SNN) implementations provide a
powerful computation fabric where a smaller number of proces-
sing elements can potentially be utilized in order to realize desired
functionality. When working with SNN implementations, usually
the designer provides different, specified goals during design
phase. The goals determine the level of detail needed when
designing the neuron and synapse behavior. Hardware neural
networks have been used to study different phenomena in biolo-
gical neural networks. This has brought about different neuron
models with their hardware implementations. Hardware neural
networks seek to be simple in functionality in order to minimize

www.sciencedirect.com/science/journal/01679260
www.elsevier.com/locate/vlsi
http://dx.doi.org/10.1016/j.vlsi.2016.01.002
http://dx.doi.org/10.1016/j.vlsi.2016.01.002
http://dx.doi.org/10.1016/j.vlsi.2016.01.002
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2016.01.002&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.vlsi.2016.01.002&domain=pdf
mailto:pinakimazum@gmail.com
mailto:hudi@umich.edu
mailto:idong@eecs.umich.edu
mailto:xz70@duke.edu
mailto:dec.ziyer@gmail.com
mailto:sferrari@duke.edu
http://dx.doi.org/10.1016/j.vlsi.2016.01.002

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117110
the area associated with this processing element. This brings
about the massive tradeoff between complex models like the
Hodgkin–Huxley and the leaky integrate and fire (LIF) [15]. Since
SNN solutions require numerical solutions with no closed form
representations, their behavior in hardware is much harder to
predict. Therefore, learning algorithms tenable to hardware
adoption are crucial to pushing widespread SNN adoption. Soft-
ware SNN implementations are widespread; hardware imple-
mentations need to catch up, hence the thrust behind this work.
The contributions in this paper are: abstraction and mapping of a
complex learning process to a digital spiking neural network
fabric. A digital approach is used in order to encourage repeat-
ability when dealing with complex SNNs. A virtual bug example is
used to illustrate the strength of this algorithm. Section 2 will
provide details on the model of the virtual insect. Section 3 will
expand on the specific example by showing top level neural net-
work organization, the training algorithm, and the CMOS circuit
adaptation. Section 4 will provide simulation results and discus-
sion, and Section 5 relays some concluding remarks.
2. Virtual insect model

The test setup and scenario chosen is a virtual insect (bug)
model. The virtual insect model is constructed to demonstrate and
evaluate the indirect training algorithm [1] and hardware-level
rapid prototyping design. Offline training with limited information
is adopted for the chosen application. After training the virtual
insect, the virtual insect is used in a homing application where it is
used to find a given target on a two-dimensional space with
obstacles.

The virtual insect is a moniker based on the given construct in
Fig. 1, since the sensors are attached to the body like antennae on a
biological insect. The virtual insect is modeled as a rigid object that
can move in any direction on a map. Fig. 1 shows the external
structure and environment of the virtual insect. The environment
of the virtual bug consists of obstacles which are denoted as black
objects and a target which is denoted as a bright spot on the map.
The virtual bug has four sensors which provide terrain and target
information. The bug has an elliptical shape and is symmetric
along its major axis. On each symmetric half, a target sensor, a
terrain sensor, and a motor is modeled. By convention, the labels
for these sensors and motors are either “Left” or “Right,”
depending on which half they reside as depicted in Fig. 1.

The target sensor generates a signal Starget based on the distance
between the sensor and the target. By convention, the further the
virtual insect is from the target, the higher the magnitude or
intensity of Starget . The terrain sensor generates a signal Sterrain
based on the roughness of the map, with a rougher map corre-
sponding to a more intense or higher magnitude of Sterrain. The two
Fig. 1. External structure of the virtual insect.
motors effect the direct motion of the insect. Intuitively, if the left
motor has a higher revolutions per minute (rpm) compared to the
right motor, the insect will turn right. The insect turns left if the
right motor rotates faster than the left motor. If the two motors
have the same rpm, then the virtual insect will move forward in its
direction of orientation. The motion of the virtual insect is
restricted in that its motors are allowed to rotate in only one
direction. Therefore, the insect is incapable of reversing (moving
opposite its oriented direction). If the insect needs to follow the
direction opposite its direction of orientation, it will need to turn
towards that direction then move forward.

Since virtual insect motion is determined by both the relative
angular velocities of the two motors and the current sensor inputs
regarding proximity to obstacles and the target, the internal con-
nection between the sensors and the motors is described.

When the insect moves in the prescribed environment, its
motion can be described by (1), adapted from the modified uni-
cycle robot locomotion in [16,,1]. By restricting the environment to
a 2D Cartesian plane, when the insect moves, its linear velocity can
be described as v. v can be decomposed into components in both
the x-direction and y-direction, denoted in (1) as vx and vy,
respectively. vleft and vright are the speeds of the left and right
motors, respectively. θ is the variable used to represent direction
of orientation and is defined as the angle between the major axis
of the elliptical insect and the x-axis. L, τmotor and η are scaling
constants; and tfL and tfR are the firing times of output neurons
(more on this later).

vx ¼ v� cos θ
� �

vy ¼ v� sin θ
� �

v¼ vleft þvright
2

Δθ¼ vright �vleft
L

Δvleft ¼ � vL
τmotor

þη � t ¼ ¼ tfL
� �

Δvright ¼ � vR
τmotor

þη � t ¼ ¼ tfR
� �

8>>>>>>>>>>>><
>>>>>>>>>>>>:

ð1Þ

According to (1), Δvleft and Δvright are always negative and
become positive only when t ¼ tfL or when t ¼ tfR, respectively. This
translates to a motor's rpm, vleft or vright , is always decreasing
unless its corresponding output neuron spikes. Therefore, the
more frequently an output neuron fires or spikes, the faster the
speed of the corresponding motor. The next section will elucidate
the connections between the output neurons and how its spiking
events are controlled. Essentially, the dependence on the firing
frequency of an output neuron on the synaptic weights of the
neural network reduces the training of the virtual insect to weight
parameter adjustment.
3. Spike-based training approach

3.1. Top level NN organization

In the previous discussion, the control of the motors was due to
a spiking pattern of the outputs of some neural network. This
section provides the top level architecture and inherent con-
nectivity of the spiking neural network (SNN) controlling the
motors. The SNN architecture (illustrated in Fig. 2) resembles a
feedforward neural network with an input layer, a hidden layer
and an output layer. The input layer interfaces with the four sensor
inputs while the output layer interfaces with the two motors. The
two output layers are shown as separate entities to make clear
there is no interconnectivity between the two layers. Additionally,
the structure of the SNN is flexible (i.e. each layer can have any
number of neurons and can be of any shape, and the connections

Fig. 2. The structure of the SNN showing information flow and layers.

r

r

r=1

s=1

r=2

s=2

MM

NN

reference neur
NN layer contain
MM layer contain
 preceding ne
 r neighborhoo
 s neighborhoo
 that provide

ron (i,j)
ning neuron (i,j)
ning neurons
euron (i,j)
od around neuron (i,j
d defining neurons
inputs to neuron (i,j)

)

)

Fig. 3. Layer connection relaying the concept of neighborhoods for the large SNN
design.

Generate Sensor
Signals

START

Determine
Output Firing
Frequencies

Determine Error
Double the
number of

neurons to train

END

Is error low
enough?

Is error
increasing?

Half the number
of neurons to

train

Train Input
Layer Synapses

YES

NO

YES

NO

Fig. 4. Flowchart showing the different steps involved in the SNN training
algorithm.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117 111
between neurons can be arbitrary) as long as the overall structure
is kept. There needs to be an input layer, hidden layer and output
layer as demonstrated in Fig. 2.

The SNN resembles a feedforward network but is not by defi-
nition feedforward due to the connections within layers, which we
will dub the intra-layer connections. The parameters that describe
this connectivity are: neighborhood connectivity and special
treatment of neurons on the edge. The hardware implementation
of this SNN with the prescribed connectivity is highly dependent
on the resources available. In the case of a field programmable gate
array (FPGA) implementation, the number of logic elements will
limit the connection scheme and neighborhood. In the case of
CMOS implementation, the area it takes to implement a synapse
will limit the connectivity. The chosen connectivity for this work is
discussed in the CMOS implementation subsection.

The neuron model adopted is a leaky-integrate and fire model
[17] expressed in (2):

τm
dVij tð Þ
dt

¼ �Vij tð ÞþRm

X
k;lð ÞANNr i;jð Þ

aij;klf Vkl tð Þð Þ

þRm

X
k;lð ÞAMMs i;jð Þ

bij;klf Vkl tð Þð Þþ Istim ð2Þ

where Vij tð Þ is the membrane potential or the internal state vari-
able of the ij neuron or processing element, and Rm and τm are
constants modeling membrane resistance and membrane passive
time constant, respectively. Istim is used to model direct stimula-
tion of the neuron; this is useful for training signal inputs. f Vkl tð Þð Þ
provides the firing state of neuron kl and takes on the value of
either 0 for a non-firing neuron or 1 for a firing neuron. aij;kl and
bij;kl represent synaptic conductance for intra-layer pre-neurons
and inter-layer pre-neurons, respectively. NNr i; jð Þ and MMs i; jð Þ
represent the intra-layer and inter-layer neighborhoods, respec-
tively, of neuron ði; jÞ. r¼ 1 or s¼ 1 represents a neighborhood of
9 neurons. Fig. 3 provides a graphical depiction of the arrangement
in relation to this definition. When Vij tð Þ reaches a predefined
threshold due to its pre-synaptic neuron activity, neuron ði; jÞ fires
(Fig. 4).

Eq. (2) uses prescribed neighborhoods but the exact connec-
tions can actually differ randomly. For example, in [1], a prob-
ability density function was used to determine the connectivity.
This approach is conducive in software implementation and rapid
prototyping with FPGA but is not recommended for CMOS
implementation. The CMOS implementation in this work utilizes
different connection schemes to determine how the effect of
connectivity influences the integrity and training effort of the
solution. The synaptic conductances, aij;kl and bij;kl, can either be
fixed or varying. In this work, the synapses are modified using
asymmetric spike timing dependent plasticity (STDP) [18–20]. The
specific details of the implementation are divulged in the training
methodology of the paper, presented next.

3.2. SNN training algorithm

3.2.1. Flowchart
The training methodology chosen is limited and different from

other methods due to the following ratiocination: stimulate the
input and or probe the output. With this restriction, direct control
of synapses is prohibited and therefore unconducive to setting
conductances to specific values. STDP, therefore, is adopted to
allow indirect control and training of synapses. The indirect
training algorithm can be broken down into five steps. The dif-
ferent steps in the algorithm are further explicated:

Step 1.Generate sensor signals: Twelve sensor scenarios are
provided in Table 1. For parameter adjustment, the first step is to
generate terrain and sensor signals for the 12 possible cases.
Essentially, provide values for SterrainL, StargetL, SterrainR, and StargetR.
These essentially are the left terrain sensor input, the left target

Table 1
12 sensor signal cases.

Case # Left terrain Right terrain Left target Right target

1 Plain Plain Strong Weak
2 Plain Rough Strong Weak
3 Rough Plain Strong Weak
4 Rough Rough Strong Weak
5 Plain Plain Equal Equal
6 Plain Rough Equal Equal
7 Rough Plain Equal Equal
8 Rough Rough Equal Equal
9 Plain Plain Weak Strong
10 Plain Rough Weak Strong
11 Rough Plain Weak Strong
12 Rough Rough Weak Strong

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117112
sensor input, the right terrain sensor input and the right target
sensor input, respectively.

Step 2. Determine output firing frequencies: For each case in Step
1, the desired output frequencies are calculated using the linear
model in (3). In (3), f desiredL and f desiredR are the desired firing fre-
quencies of both the left and right output neurons while C1 and C2

are constants. C1 is set to be larger than C2 to prioritize the terrain
sensors.

f desiredL
f desiredR

� �
¼

SterrainL StargetL
SterrainR StargetR

 !
C1

C2

� �
ð3Þ

Step 3. Determine Error: Neural network designs hinge on
improving a certain performance metric. Only output neuron firing
patterns can be probed, therefore, the performance metric is tied
to the desired firing and observed firing frequencies. The error
metric, provided in (4) as et , is essentially an average of the
deviations from actual firing frequencies for all the 12 cases in
Table 1. L and R designate the left and right output neurons,
respectively, and p designates the 12 cases.

et ¼
X
XAL;R

X12
p ¼ 1

jf pdesiredX� f pactualX j
24

ð4Þ

Step 4. Generate Training Signals: After determining the value of
et , it is compared with both its previous value in the previous
training epoch and an upper-bound error value. In the case, we are
not under the upper-bound error value, the error value is com-
pared with its previous value to determine if error is decreasing or
increasing. If decreasing, then the training signal directions are
kept the same. If increasing, then the training signals are reversed.

Step 5. Train input layer intra-layer synapses: This step is
optional and only performed when the error value obtained is not
enough to reach the stop condition. If stop condition is not met,
then the training signals generated in Step 4 are used to train
random input neuron pairs. The training that occurs in each
training epoch utilizes the modified model in (5) to determine
how many neuron pairs (Nr) to train. When the error metric et
decreases, the number of pairs trained will double compared to
the previous training epoch. On the other hand, if et increases, Nr

will be halved. There are limits to the growth of Nr placed on the
hardware design by endorsing maximum and minimum values,
thereby discouraging training that does not converge.

Nrþ1 ¼
2 � Nr ; Δe tlð Þo0

0:5 � Nr ; Δe tlð Þ40

(
ð5Þ
3.2.2. Spike timing dependent plasticity
Steps 1 through 5 list the broader activities that occur in a

training epoch. This subsection will provide more detail pertaining
to steps 4 and 5. Only one neuron pair receives training inputs
during a training epoch. The objective of the neuron pair stimu-
lation is to modify the synapse between them, and this mod-
ification is achieved through STDP. STDP relates synapse con-
ductance change to the spike time between the neurons sharing
the synaptic connection. Defining the spike time difference
between two neurons as Dij;kl, the value for the value for the next
Dij;kl can be obtained for each training epoch.

In Step 4, given a certain Dij;kl, training signals are generated. In
Step 5, the training signals are applied to an input neuron pair. The
Dij;kl for input layer neurons can be controlled quite readily by
modulating the time difference for the application of the training
signals. Also within Step 4, the Dij;kl for the next training epoch is
dependent on the change in the error value. This signifies, Dij;kl is
changed from positive to negative and vice versa if the error value
is moving in a non-intended direction. The synaptic weight dif-
ference corresponding to a certain Dij;kl is defined as Δwij;kl in (6):

Δwij;kl ¼
Aþ Ue�Dij;kl

τþ ; Dij;kl40

�A� Ue
Dij;kl
τ� ; Dij;klo0

8><
>: ð6Þ

where wij;kl is the synaptic weight between neuron i; jð Þ and neuron
k; lð Þ neurons Aþ and A� are constants determining the maximum
increase or maximum decrease in weight for each pair of pre- and
post-synaptic spikes and τþ and τ� are time constants.

3.3. CMOS circuit adaptation

With the virtual insect application explained and the training
method for the SNNwithin the insect model understood, the idea of
rapid prototyping and generation of CMOS circuits in hardware is
discussed. The indirect training algorithm lends itself to evaluation
in three formats: a small FPGA implementation, a small digital
CMOS SNN, and a large digital CMOS SNN. Both CMOS imple-
mentations utilized 130-nm process technology. The small designs
consisted of 7 neurons while the large design housed 406 neurons.
In addition to SNN size difference, the small and large designs had
varying connectivity and different synapse constraints.

Fig. 5 shows the intra-layer and inter-layer connection for the
large SNN design. Since the small design has fewer neurons, the
number of synapses is drastically reduced and hence there is
flexibility to use complex STDP synapses for all synapses. The large
design, on the other hand, contains many neurons with the fol-
lowing specifications for the modification of (2): the decay factor
�Vij tð Þ is set to 0, r¼ 1, and s¼ 1. Additionally, within the differ-
ent layers, the nature of aij;kl differs – aij;kl follows STDP mod-
ification within the input layer. Within the hidden and output
layers on the other hand, aij;kl has fixed weights. This modification
was made in order to: (a) deal with the drawback of large area
STDP synapses and (b) reduce the training time since simulation
takes too long with all synapses changing values with respect to
spikes. The small designs, especially the FPGA implementation, are
used as verification engines for the training methodology. Unfor-
tunately, we were not in the possession of a larger FPGA to display
the prowess of the training algorithm but the small design suffices.

In addition to the simplification of synaptic connections, some
approximations had to be made for hardware implementation. The
following list provides the key approximations made:

1. The current implementation was a focus on the SNN design,
therefore, interface circuits for the mechanical components of

Fig. 5. Large SNN design (left) intra-layer connection (right) inter-layer connection.

Testing
Controller

Training Controller

Training Sensor
Signal Generator

Spiking
Neural

Network

MUX

Testing
Controller

Left
Output
Layer

Right
Output
Layer

MUX Hidden Layer

Input Layer

Training Controller

Training Sensor
Signal Generator

Synapses

Synapses

Fig. 6. Floorplan of both designs showing high level modules and connections between these modules (a) small design (b) large design.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117 113
the insect was not designed. In order to properly translate the
requirements of (1) to obtain positional information, the
dynamics of (1) was implemented in hardware. Lookup
tables (LUTs) were used to implement the trigonometric func-
tions, therefore, tying the performance of the virtual insect to
the resolution of this LUT.

2. In order to implement STDP, multiplication to the exponential
function is necessary. Base e was replaced with base 2 for
hardware simplicity, making multiplication translate directly to
shifting.

3. The terrain signal adopts a binary representation, either zero or
one, in order to reduce the complexity of calculation. Zero
indicates the absence of an obstacle while one signals the pre-
sence of an obstacle. The idea of terrain roughness is therefore
moot and is left for future work.

4. Due to the digital CMOS implementation, a synchronous SNN
was more conducive to training. Therefore, the neuron spike
signals occurred at the positive edge of the clock signal. This
inadvertently quantized the time axis of the STDP curves into
factors of the clock period. The positive to this adoption is that
the time difference between two spikes is precisely calculated,
therefore, minimizing the effects of quantization.
5. Pseudo-random number generator for selecting which neurons
to train is implemented with a 32-bit linear feedback shift
register to ensure no repeated training pattern occurs.

The decisions and simplifications outlined would be very dif-
ferent for a mechanical insect – the interface design for motors
and sensors would have to be part of the design in order for the
insect to observe and react to environmental stimulus. By emu-
lating the functions of these devices in circuit, it impacts the
functionality and space used on-chip for the SNN design. For
example, the testing circuitry is implemented alongside the SNN,
separate from the training circuitry. The testing circuitry utilizes
the virtual insect’s positional information to generate sensor signal
inputs to the SNN. The generated sensor signals then cause output
spike sequences which are then used to calculate the positional
information for the next period based on the relationship in (1).
There is room to improve on resource and design effort con-
sumption of the testing controller when moving from a virtual to a
mechanical insect, hence, the resource impact of this block should
not be a focal point. With the approximations made and the
functionality of the testing and training circuits discussed, Fig. 6
shows the floorplan of both the small and large designs. They both

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117114
consist of a training controller, a testing controller, a mux to select
between training signals and testing signals, a training signal
generator and the SNN.

Fig. 6 also shows the dataflow of each design. The biggest dif-
ference between Fig. 6a and b is peripheral circuitry needed to
handle the differing network sizes. Fig. 6a has a block for the SNN
which contains 7 neurons and 8 synapses while Fig. 6b needed to
be broken apart in order to handle the wire connectivity. The
floorplans correspond directly to the layouts so those are not
included in this article. In layout pictures, each major block is
circled and corresponds to a block shown in the corresponding
floor plan. Table 2 breaks down the layout area of each major
component defined Fig. 6. The full chip area without pads for each
design is provided as well. With pads included, the small design
has an area of 2.8 mm by 2.8 mm while the larger design has an
area of 6.5 mm by 4.8 mm.
Table 2
Layout area of both CMOS designs.

SMALL LARGE
Block Area Block Area

SNN 800 μm�400 μm Input layer 4600 μm�1600 μm
Hidden layer 3750 μm�500 μm
Output layer 800 μm�200 μm�2

Training signal
generator

450 μm�20 μm Training signal
generator

710 μm�36 μm

Testing
controller

300 μm�980 μm Testing
controller

900 μm�400 μm

Training
controller

720 μm�160 μm Training
controller

4900 μm�200 μm

Control signal
mux

300 μm�300 μm Control signal
mux

950 μm�800 μm

Whole chip
without pads

1500 μm�1200 μm Whole chip
without pads

5200 μm�4000 μm

Table 3
Layout area of both CMOS designs

Total
power/
mW

Leakage/μW SNN's
power/
mW

Other
power/
mW

of
neurons

Large design 13.24 1.06 9.485 3.755 406
Small
design

1.468 0.0679 0.889 0.579 7

Large/small
ratio

9.019 15.61 10.669 6.485 58

Fig. 7. Trails of the virtual insect on a uniform, obstacle-free terrain and on a terrain
references to color in this figure legend, the reader is referred to the web version of th
Table 3 shows the power consumption of both designs.
Although, in term of the number of neurons, the large design is 58
times of the small design, its area is only 4 times of the small
design and its power consumption is only 9 times of the small
design. This implies that the area and power consumption of the
design do not increase linearly with respect to the size of the
design and thus allows us to increase the design’s size with lower
cost. The next section presents the results of both chips and pro-
vides a cross comparison between all platforms.
4. Results and discussion

The indirect training algorithm was implemented in MATLAB,
FPGA and CMOS to train the SNN presented in Section 2 to allow
the virtual insect to perform the terrain navigation task. The small
design has also been tested on an Altera Cyclone II EPC20F484C7
FPGA board to ensure that the implemented design works in real
hardware. To implement the small design 21,172 logic elements
and 1104 dedicated logic register were used.

The performance of the trained insect was first evaluated by
MATLAB simulations, as demonstrated in Fig. 7, in which the green
line and the blue line depict trails of the untrained state and the
trained state of the virtual insect, respectively. The results show
that after the SNN was fully trained, the virtual bug was capable of
with different roughness, populated by obstacles [1]. (For interpretation of the
is article.)

Fig. 8. Untrained hardware virtual insect trajectory on a map of size 1000�1000.

Fig. 9. (a) Trails of the small design on a plain map (b) Trails of the small design on a map with a square obstacle (c) Trails of the large design on a plain map (d) Trails of the
large design on a map with a square obstacle.

Fig. 10. (Left) Trails of the small design on a map with random obstacles (Right) Trails of the large design on a map with random obstacles.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117 115
avoiding obstacles and obtaining the target position. The
untrained insect really stays in the same vicinity so the trajectory
captured by the green line is so small due to the random move-
ment of the insect around the same area.

The confirmation of Fig. 7 in MATLAB is realized with the
hardware versions of the virtual insect in Fig. 8. When the insect is
untrained its trajectory is unpredictable. In the case of the MATLAB
version (green line in Fig. 7), the insect remained in the same
surrounding area while that of Fig. 8 shows that the insect area is
actually a bit larger than expected. A zoomed in shot is provided in
order to show a visual explanation of what is happening. The map
size the insect is moving in is actually 1000�1000 map with a
target at (500, 220). The untrained virtual insect wandered ran-
domly within the 100 by 100 area, which is differs a bit from Fig. 7,
but provides the flavor of the same phenomenon. The larger space
shows that the structure inherent in an untrained hardware is
better than a randomized neural network structure in software.
The hardware should therefore take less number of training ses-
sions than the software implementation because of this.

Figs. 9 and 10 show the different trajectories under different
conditions for both the small and large designs. The testing phase
was executed with block obstacles as opposed to the type of map
utilized in the MATLAB verification. The reasoning behind the
choice stemmed from the fact that the verification hardware is
included in each design. Therefore, the complexity of the map had
to be reduced in order to achieve reasonable simulation times.
Another reasoning behind the choice of maps was the third
modification adopted for CMOS circuit simplification. Even if a
complex map were generated, the insect would be unable to dis-
tinguish a smooth terrain from a rough terrain. It would either see
an obstacle present or not present. The cloud map in Fig. 7 from
the hardware insect's perspective would just be a black and white
map instead of something in grayscale. With the short preamble
out of the way we will dive into the results of Fig. 9.

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0
0.2

0.4

0.6

0.8

1

1 5 9 13

C
ha

ng
e

in
 E

rr
or

N
or

m
al

iz
ed

 E
rr

or

Training Epoch

Large Design Error During
Training

-0.08

-0.05

-0.02

0.01

0.04

0

0.2

0.4

0.6

0.8

1

1 6 11 16 21

C
ha

ng
e

in
 E

rr
or

N
or

m
al

iz
ed

 E
rr

or

Training Epoch

Small Design Error During
Training

Fig. 11. Sample error profile during training. The solid line shows the normalized error between expected and observed firing frequencies and the dotted line shows the
change in error from one epoch to the next. The error profile for the large design is shown in (a) and that for the small design in (b). The small design takes more training
epochs to minimize error compared to the large design.

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117116
Fig. 9a shows the trails of the small design on an obstacle free
map. The target locations are at (950, 600), (800, 500), (600, 350),
(400, 220), (500, 70), (900, 70) and (850, 200). The target locations
were chosen to be in a half-plane as displayed with the dotted
diagonal line of slope 1, since a symmetry exists in the structure of
the small design. Also visible in Fig. 9a, the targets are represented as
dots while the insect originates from the same location each time.
For the trained insect, it was able to move towards the target and
then stop at a position close to the target. The discrepancy between
the location the insect stops and the location of the target comes
about because of the way the target sensor signal is generated.

The expression, jxinsect � xtarget j2 �jyinsect �ytarget j2
2000 , was used to represent

the target sensor signal. As a result, when the numerator had a
value is less than 2000, the evaluated expression would take on
the value of 0 due to the integer division. This causes the target
sensor to generate no signal, thereby causing the insect to stop
moving. Therefore, the virtual insect would stop at a location close
to the given target but not right next to the target. This is not a
drawback but an artifact of the testing circuit. This type of preci-
sion error can be overcome by using floating point arithmetic.

Fig. 9b elaborates the trails of the small design on a map with a
square obstacle. Targets were kept at the same locations as those
in the previous trial (Fig. 9a) in order to exhibit fair comparison.
The takeaway here is that the trained virtual insect changed its
trajectory due to the presence of the obstacle, even though the
target was in the same location. Eventually, the virtual insect was
able to stop at a position close to the target. Fig. 9c and d provide
similar test results for the large design.

Multi-obstacle tests were performed for both large and small
designs. The obstacle choices in Fig. 9b and d showed different
results pertaining to trajectories around an obstacle therefore
further tests were necessary to validate performance. Fig. 10 on the
left shows two different obstacle and target configurations for the
small design, while Fig. 10 on the right shows two different
obstacle and target configurations for the large design. The small
design exhibits a bit choppier trajectory showing some wasted
space between the path chosen and the obstacle. The larger design
seems to show smoother turns and more hugging of the obstacle
when going around it. In addition, with more neurons available,
the larger design could explore on a larger map than that the small
design could explore.

The differences between both designs is actually a bit more
pronounced than first realized. The distinction from the trajectory
taken and the accuracy pertaining to wasted moves may be linked
to the error present for each of the designs. From Fig. 11, the
number of training epochs necessary for the large design is smaller
than that for the small design. The large design reduces normal-
ized error drastically with each training epoch compared to the
small design. This is fully expected since the small design has
converging paths that require synaptic weights that need to be in
fairly precise proportions, the training is definitely more gradual
than that of the large network. The tolerance set for the error may
also explain away the discrepancies between the two.
5. Conclusion

This work presents a hardware implementation of an SNN with
an indirect training algorithm. Two SNN versions were adopted to
validate the software algorithm in hardware and also provide
comparisons with respect to the efforts of scalability of the
approach. Additionally, a virtual insect model was developed as an
example to demonstrate how this approach can be used to solve
practical problems. Hardware implementation was accomplished
at both the FPGA level and the CMOS level. The implemented
design was tested on real hardware to show that the proposed
SNN structure and training algorithm can be adopted in circuit
designs. Future work may include building a complete virtual
insect with sensors and motors or expanding the virtual insect
model to solve other types of problems, such as pattern recogni-
tion and robotic games.
References

[1] X. Zhang, Z. Xu, C. Henriquez, S. Ferrari, Spike-based indirect training of a
spiking neural network-controlled virtual insect, In: Proceedings of IEEE 52nd
Annual Conference on Decision and Control (CDC), 2013, pp. 6798–6805.

[2] Y. Liu, X. Zhang, H. Li, D. Qian, Allocating tasks in multi-core processor based
parallel system, In: IFIP International Conference on Network and Parallel
Computing Workshops, 2007, pp. 748–753.

[3] T. Schoenauer, A. Jahnke, U. Roth, H. Klar, Digital neurohardware: principles
and perspectives, In: Proceedings of Neuronal Networks in Applications, 1998,
pp. 101–106.

[4] W. Maass, Networks of spiking neurons: the third generation of neural net-
work models, Neural Netw. 10 (9) (1997) 1659–1671.

[5] W. Maass, C.M. Bishop, Pulsed Neural Networks, MIT press, USA, 2001.
[6] C. Mead, M. Ismail, Analog VLSI Implementation of Neural Systems, Springer,

Germany, 1989.
[7] P. Treleaven, M. Pacheco, M. Vellasco, VLSI architectures for neural networks,

IEEE Micro 9 (6) (1989) 8–27.
[8] M. Glesner, W. Pöchmüller, Neurocomputers: An Overview of Neural Net-

works in VLSI, CRC Press, USA, 1994.
[9] D. Hammerstrom, A highly parallel digital architecture for neural network

emulation, in: Ebong Idong (Ed.), VLSI for artificial intelligence and neural
networks, Springer, 1991, pp. 357–366.

http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref1
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref1
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref1
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref2
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref3
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref3
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref4
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref4
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref4
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref5
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref5
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref2545
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref2545
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref2545
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref2545

P. Mazumder et al. / INTEGRATION, the VLSI journal 54 (2016) 109–117 117
[10] U. Ramacher, SYNAPSE—a neurocomputer that synthesizes neural algorithms
on a parallel systolic engine, J. Parallel Distrib. Comput. 14 (3) (1992) 306–318.

[11] P. Arena, L. Fortuna, M. Frasca, L. Patane, Learning anticipation via spiking
networks: application to navigation control, IEEE Trans. Neural Netw. 20 (2)
(2009) 202–216.

[12] H. Burgsteiner, Imitation learning with spiking neural networks and real-
world devices, Eng. Appl. Artif. Intell. 19 (7) (2006) 741–752.

[13] S. Ferrari, B. Mehta, G. Di Muro, A.M.J. VanDongen, C. Henriquez, Biologically
realizable reward-modulated hebbian training for spiking neural networks, In:
Proceedings of IEEE International Joint Conference on Neural Networks, 2008,
pp. 1780–1786.

[14] E.M. Izhikevich, Simple model of spiking neurons, IEEE Trans. Neural Netw. 14
(6) (2003) 1569–1572.

[15] E.M. Izhikevich, Which model to use for cortical spiking neurons? IEEE Trans.
Neural Netw. 15 (5) (2004) 1063–1070.

[16] S.M. LaValle, Planning Algorithms, Cambridge University Press, UK, 2006.
[17] W. Gerstner, W. Kistler, Spiking Neuron Models: Single Neurons, Populations,

Plasticity, Cambridge University Press, Cambridge, UK, 2001.
[18] G.-q Bi, M.-m Poo, Synaptic modifications in cultured hippocampal neurons:

dependence on spike timing, synaptic strength, and postsynaptic cell type, J.
Neurosci. 18 (24) (1998) 10464–10472.

[19] G.S. Snider, Spike-timing-dependent learning in memristive nanodevices, IEEE
Int. Symp. Nanoscale Arch. (2008) 85–92.

[20] C. Zamarreno-Ramos, L.A. Camunas-Mesa, J.A. Perez-Carrasco, T. Masquelier,
T. Serrano-Gotarredona, B. Linares-Barranco, On spike-timing-dependent-
plasticity, memristive devices, and building a self-learning visual cortex, Front.
Neurosci. 5 (26) (2011) 1–22.
Pinaki Mazumder received the Ph.D. degree from the University of Illinois at

Urbana-Champaign, Urbana-Champaign, in 1988. Currently, he is a Professor with
the Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor. He was the lead Program Director of the Emerging Models
and Technologies Program at the US National Science Foun- dation, and worked for
6 years in industrial R&D centers that included AT&T Bell Laboratories, where in
1985, he started the CONES Project –the first C modeling-based very large scale
integration (VLSI) synthesis tool. His research interests include current problems in
Nanoscale CMOS VLSI design, CAD tools, and circuit designs for emerging tech-
nologies including Quantum MOS and resonant tunneling devices, semiconductor
memory systems, and physical synthesis of VLSI chips. Dr. Mazumder is a Fellow of
the IEEE (1999) and a Fellow of the AAAS (2007) for his contributions in the field of
VLSI.
Idongesit E. Ebong received the B.S. and M.S. degrees in 2006 from Carnegie
Mellon University, Pittsburgh, PA, both in electrical and computer engineering. In
2012, he finished his Ph.D. degree in electrical engineering at the University of
Michigan, Ann Arbor. His research interest includes digital/analog integrated circuit
design, focused primarily on new devices and low power applications.

http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref6
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref6
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref6
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref7
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref7
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref7
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref7
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref8
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref8
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref8
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref9
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref9
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref9
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref10
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref10
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref10
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref11
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref12
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref12
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref13
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref13
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref13
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref13
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref14
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref14
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref14
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref15
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref15
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref15
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref15
http://refhub.elsevier.com/S0167-9260(16)00004-3/sbref15

	Digital implementation of a virtual insect trained by spike-timing dependent plasticity
	Introduction
	Virtual insect model
	Spike-based training approach
	Top level NN organization
	SNN training algorithm
	Flowchart
	Spike timing dependent plasticity

	CMOS circuit adaptation

	Results and discussion
	Conclusion
	References

