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* Modern Sensor Systems — multiple sensors installed on mobile platforms

- landmine detection and i1dentification

- ambient intelligence, monitoring of urban environments, search & rescue

* Traditional paradigm: sensor information is used as feedback to sensors in
order to support the sensor navigation.

* New paradigm: sensors’ motion is planned considering the expected utility
of future measurement process, to support one or more sensing objectives

* Research Emphasis: Geometric aerial robotic sensor path planning

-- Address couplings between sensor measurements and sensor dynamics

-- Optimize sensing objectives (e.g., detection, classification, tracking.)
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* Applications: landmine detection, sensor networks for monitoring
endangered species
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Surveillance

M. Qian and S. Ferrari, “Probabilistic deployment for multiple sensor systems,” Proc. SPIE, 2005

C. Cai and S. Ferrari, “Information-Driven Sensor Path Planning by Approximate Cell Decomposition,” IEEE Transactions on
Systems, Man, and Cybernetics - Part B, Vol. 39, No. 2, 2009.
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Given workpace W < R’, where r robotic sensor plaftorms 4={ 4,,---, 4.} c W

with sensor FOV § ={§,,---,8,} € W, n fixed obstacles B={3B,,---,8,} = W
m fixed targets 7 ={T,,---, T } =W

State q; = [x; v; z; 0;]"

Purpose:

Find a sequence of measurements

Z(r) = | ;0 8q,) #¢,7(5)=q; ,s €[01].i € I},

to optimize some expexted observation benefit

ViZ(D)]= ). V(Z).

Z,eZ(7)
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Motion dynamics

MP = —usRez + Mge;
R = RS(w)
Jw = S(w)w + pn;

P € R3: position of center gravity

P — X A
[xi yi 2] w € R3: angular speed (body frame)

W = [Wx Wy WZ]

€3 =[O Ol]T

R € R3*3: rotation matrix(body—inertial)

M € Rs: mass
S( [x1 22 x3]")
0 —x3 x J € R3*3: inertia matrix
= lX3 0 —X1:|

%, x; 0 U € Ryg: control force

I, € R3: control torque vector
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Entropy H(X)=-2 p(x)log p(x)

xeX

Conditional entropy H(X|Z;) = z p(z))H(X|z;)

Zi €EZ
Conditional mutual information

I(X; Z;|2) = H(X|A) — H(X|Z;, A)

Information Benefit to have Z,

V(Z;) =1(X;Z;|2)

=
=

H(X|2) H(Z;|12)
M. Cover and J. Thomas, Elements of Information Theory, 1991
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Configuration
References

v

References
Control mput
v
Control input UAYV simulator
Configuration

Mode planner
High level controller

Information potential™®

Low level
controller

Cascade control**

*W. Lu, G. Zhang, and S. Ferrari, “An Information Potential Approach to Integrated Sensor Path Planning and Control” IEEE

Transaction on Robotics, to appear
**R. Naldi, M. Furci, “Global Trajectory Tracking for Underactuated VTOL Aerial Vehicles using a Cascade Control Paradigm”,

IEEE Conference on Decision and Control, 2013
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Potential at q

Novel attractive potential
the ith target

Total attractive potential

Repulsive potential U
of the ith obstacle i

Potential between two

J ()
robotic sensors Uk (@) =1

a),, =

Total repulsive potential

Potential Field Construction

U(q) = U(q)rep + U(q)alt

pi(q)

Ui (q)att - 7726Via (1 o e_ aid )

2

U@, =] U,@.

-

1

1
-

2
1
- U@, if p@<p
2 pl(q) poj ’

k 0 if  p (@) > p,
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U@,, =X U@,
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P p,
0
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JU(q)aﬁ it plL(q)<p,
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*W. Lu, G. Zhang, and S. Ferrari, “An Information Potential Approach to Integrated Sensor Path Planning and Control” IEEE

Transaction on Robotics, to appear
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When the robotic sensor is at a local minimum, randomly generate milestones
in surrounding subspace

Milestones distribution

ACIES

A function of the potential at q, ¢ V@ | is used to measure the probability

of sampling a milestone at q.
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The milestones are connected to the local minimum to construct the roadmap

A path from the local minimum to a milestone with lower potential than
the potential at the local minimum 1s found.
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High Level Control:
1. Fix time step as dt,

q (t+dt)=q,(1)+q;(@)dt

1 11 1
—— VU (q)®
> V@ [M M M

2. Information Potential
U(q) — U(q)rep + U(q)atl

Low Level Cascade Control*:
1. Position Control Law
2. Attitude Control Law

~ Local minimum detected

/r’ o
[ Gradient |

Minumum escaped 4 Escaping

/ | minimum
C-Target region \\

entered Measure obtained N

[ \
".. Measuring |
\\

.\v//f,

*R. Naldi, M. Furci, “Global Trajectory Tracking for Underactuated VTOL Aerial Vehicles using a Cascade Control Paradigm”,

IEEE Conference on Decision and Control, 2013
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One robotic sensor

n targets with same V;
m fixed obstacles

r moving obstacles

Result: One Sensor
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Result: Two Sensors

First sensor ( R4, ): Range [1, 256], white Gaussian noise of 0 = 5

Second sensor ( R ): Range [5, 25], white Gaussian noise of ¢ = 0.1

One target: 8

P(X =x;) = %,xi € {1,2,-,256}

V(Zl) 6| Rpricise

Viwide = 3.67
Vprecise = 0.35

Rwide \

100 150 200 250 300
Xi
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Result: Two Sensors

After R . senses the target,

|

\

P(X ]: Xi)l

50
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Xi

Vwidge = 0,
Vprecise >0
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* Hybrid controller for aerial robotic sensor path planning

* Information potential and reference model are integrated to design high
level controller

e Cascade controller navigates sensor along reference trajectories

* Maximizing classification performance.
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